Topological data analysis for the string landscape

被引:41
|
作者
Cole, Alex [1 ]
Shiu, Gary [1 ]
机构
[1] Univ Wisconsin, Dept Phys, 1150 Univ Ave, Madison, WI 53706 USA
关键词
Superstring Vacua; Flux compactifications; PERSISTENT COSMIC WEB; FILAMENTARY STRUCTURE; BREAKING;
D O I
10.1007/JHEP03(2019)054
中图分类号
O412 [相对论、场论]; O572.2 [粒子物理学];
学科分类号
摘要
Persistent homology computes the multiscale topology of a data set by using a sequence of discrete complexes. In this paper, we propose that persistent homology may be a useful tool for studying the structure of the landscape of string vacua. As a scaled-down version of the program, we use persistent homology to characterize distributions of Type IIB flux vacua on moduli space for three examples: the rigid Calabi-Yau, a hypersurface in weighted projective space, and the symmetric six-torus T-6 = (T-2)(3). These examples suggest that persistence pairing and multiparameter persistence contain useful information for characterization of the landscape in addition to the usual information contained in standard persistent homology. We also study how restricting to special vacua with phenomenologically interesting low-energy properties affects the topology of a distribution.
引用
收藏
页数:31
相关论文
共 50 条
  • [21] The String Theory Landscape
    Douglas, Michael R.
    UNIVERSE, 2019, 5 (07)
  • [22] The string theory landscape
    Schellekens, A. N.
    INTERNATIONAL JOURNAL OF MODERN PHYSICS A, 2015, 30 (03):
  • [23] Is there a string theory landscape?
    Banks, T
    Dine, M
    Gorbatov, E
    JOURNAL OF HIGH ENERGY PHYSICS, 2004, (08):
  • [24] Topological data analysis and applications
    Costa, Joao Pita
    2017 40TH INTERNATIONAL CONVENTION ON INFORMATION AND COMMUNICATION TECHNOLOGY, ELECTRONICS AND MICROELECTRONICS (MIPRO), 2017, : 558 - 563
  • [25] Topological Information Data Analysis
    Baudot, Pierre
    Tapia, Monica
    Bennequin, Daniel
    Goaillard, Jean-Marc
    ENTROPY, 2019, 21 (09)
  • [26] Topological data analysis and cosheaves
    Curry, Justin Michael
    JAPAN JOURNAL OF INDUSTRIAL AND APPLIED MATHEMATICS, 2015, 32 (02) : 333 - 371
  • [27] Topological data analysis and cosheaves
    Justin Michael Curry
    Japan Journal of Industrial and Applied Mathematics, 2015, 32 : 333 - 371
  • [28] Topological partition function and string-string duality
    Phys Lett Sect B Nucl Elem Part High Energy Phys, 1-4 (131):
  • [29] TOPOLOGICAL PHASES OF THE HETEROTIC STRING
    MORSE, J
    SCHIMMRIGK, R
    PHYSICS LETTERS B, 1992, 278 (1-2) : 97 - 100
  • [30] The Topological Open String Wavefunction
    Grassi, Alba
    Kaellen, Johan
    Marino, Marcos
    COMMUNICATIONS IN MATHEMATICAL PHYSICS, 2015, 338 (02) : 533 - 561