Topological data analysis and cosheaves

被引:0
|
作者
Justin Michael Curry
机构
[1] Duke University,Department of Mathematics
关键词
Topological data analysis; Persistent homology; Sheaves and cosheaves; Barcodes; o-minimal topology; 55U99; 46M20; 32S60; 16G20; 62-07; 03C64;
D O I
暂无
中图分类号
学科分类号
摘要
This paper contains an expository account of persistent homology and its usefulness for topological data analysis. An alternative foundation for level set persistence is presented using sheaves and cosheaves.
引用
收藏
页码:333 / 371
页数:38
相关论文
共 50 条
  • [1] Topological data analysis and cosheaves
    Curry, Justin Michael
    JAPAN JOURNAL OF INDUSTRIAL AND APPLIED MATHEMATICS, 2015, 32 (02) : 333 - 371
  • [2] Topological data analysis
    Epstein, Charles
    Carlsson, Gunnar
    Edelsbrunner, Herbert
    INVERSE PROBLEMS, 2011, 27 (12)
  • [3] Topological Data Analysis
    Reinhard Laubenbacher
    Alan Hastings
    Bulletin of Mathematical Biology, 2019, 81 : 2051 - 2051
  • [4] Topological data analysis
    Oliver Graydon
    Nature Photonics, 2018, 12 : 189 - 189
  • [5] Topological Data Analysis
    Zomorodian, Afra
    ADVANCES IN APPLIED AND COMPUTATIONAL TOPOLOGY, 2012, 70 : 1 - 39
  • [6] Topological Data Analysis
    Wasserman, Larry
    ANNUAL REVIEW OF STATISTICS AND ITS APPLICATION, VOL 5, 2018, 5 : 501 - 532
  • [7] Topological analysis of data
    Alice Patania
    Francesco Vaccarino
    Giovanni Petri
    EPJ Data Science, 6
  • [8] Topological Data Analysis
    Laubenbacher, Reinhard
    Hastings, Alan
    BULLETIN OF MATHEMATICAL BIOLOGY, 2019, 81 (07) : 2051 - 2051
  • [9] Topological analysis of data
    Patania, Alice
    Vaccarino, Francesco
    Petri, Giovanni
    EPJ DATA SCIENCE, 2017, 6
  • [10] COSHEAVES
    Prasolov, Andrei, V
    THEORY AND APPLICATIONS OF CATEGORIES, 2021, 37