Performance and methane production characteristics of H2O-CO2 co-electrolysis in solid oxide electrolysis cells

被引:118
|
作者
Li, Wenying [1 ]
Wang, Hongjian [1 ]
Shi, Yixiang [1 ]
Cai, Ningsheng [1 ]
机构
[1] Tsinghua Univ, Key Lab Thermal Sci & Power Engn, Minist Educ, Beijing 100084, Peoples R China
关键词
Solid oxide electrolysis cell; H2O-CO2; co-electrolysis; Electrochemical performance; Methane; HIGH-TEMPERATURE COELECTROLYSIS; HYDROGEN-PRODUCTION; ENERGY; FUELS; STEAM;
D O I
10.1016/j.ijhydene.2013.01.008
中图分类号
O64 [物理化学(理论化学)、化学物理学];
学科分类号
070304 ; 081704 ;
摘要
H2O-CO2 electrochemical conversion in solid oxide electrolysis cells (SOECs) is one of the efficient ways to reduce CO2 emission and to simultaneously store the renewable power. In this study, H2O-CO2 co-electrolysis performance and mechanisms in solid oxide electrolysis button cells at different operating temperature (550-750 degrees C) is tested. The results indicated that the co-electrolysis performance for Ni-YSZ/ScSZ/LSM-ScSZ electrolysis cell increases significantly with temperature. The mass transfer gradually became the rate-determining step of the whole electrodes process below 750 degrees C. By substituting half of the carrier gas to CO2 for the H2O electrolysis system, the electrochemical performance of SOEC became worse, lied between that of H2O and CO2 electrolysis, and was slightly closer to H2O electrolysis at 750 degrees C. CH4 is only detected in the gas products from the reactant composition of 28.6%H2O + 14.3%CO2 + 57.1%Ar, when the operating voltage of the electrolysis cell is higher than 2 V. The CH4 production can be significantly promoted by electricity and can be effectively suppressed by impregnating the anti-carbon deposition catalyst Ru in porous Ni-YSZ cathode. The reactions between carbon element on the electrode surface and hydrogen C(s) + 2H(2) -> CH4 is proposed as one of reaction pathways for CH4 production in H2O-CO2 high temperature co-electrolysis process. Copyright (C) 2013, Hydrogen Energy Publications, LLC. Published by Elsevier Ltd. All rights reserved.
引用
收藏
页码:11104 / 11109
页数:6
相关论文
共 50 条
  • [21] Methane assisted solid oxide co-electrolysis process for syngas production
    Wang, Yao
    Liu, Tong
    Lei, Libin
    Chen, Fanglin
    JOURNAL OF POWER SOURCES, 2017, 344 : 119 - 127
  • [22] An all-oxide electrolysis cells for syngas production with tunable H2/CO yield via co-electrolysis of H2O and CO2
    Bian, Liuzhen
    Duan, Chuancheng
    Wang, Lijun
    Chen, Zhiyuan
    Hou, Yunting
    Peng, Jun
    Song, Xiwen
    An, Shengli
    O'Hayre, Ryan
    JOURNAL OF POWER SOURCES, 2021, 482 (482)
  • [23] Solid Oxide Electrolysis, Co-Electrolysis, and Methanation Fundamentals of Performance and History
    Martsinchyk, Katsiaryna
    Martsinchyk, Aliaksandr
    Milewski, Jaroslaw
    ENERGIES, 2024, 17 (24)
  • [24] Electrochemical characterization of electrolyte supported solid oxide electrolysis cell during CO2/H2O co-electrolysis
    Shirasangi, Rahulkumar
    Dasari, Hari Prasad
    Saidutta, M. B.
    JOURNAL OF SOLID STATE ELECTROCHEMISTRY, 2024, 28 (06) : 1773 - 1784
  • [25] Investigation on the reaction mechanism of solid oxide co-electrolysis with different inlet mixtures based on the comparison of CO2 electrolysis and H2O electrolysis
    Liang, Jingjing
    Wang, Yige
    Zhu, Jianzhong
    Han, Minfang
    Sun, Kaihua
    Sun, Zaihong
    ENERGY CONVERSION AND MANAGEMENT, 2023, 277
  • [26] Co-electrolysis of H2O-CO2 in a solid oxide electrolysis cell with symmetrical La0.4Sr0.6Co0.2Fe0.7 Nb0.1O3-δ electrode
    Yang, Zhibin
    Wang, Ning
    Ma, Chaoyang
    Jin, Xinfang
    Lei, Ze
    Xiong, Xingyu
    Peng, Suping
    JOURNAL OF ELECTROANALYTICAL CHEMISTRY, 2019, 836 : 107 - 111
  • [27] Electrochemical Performance of Solid Oxide Electrolysis Cells with LSCF6428-SDC/SDC Electrode for H2O/CO2 High Temperature Co-electrolysis
    Yoo, Y. -S.
    Jeon, S. -Y.
    Park, M. -A
    Lee, J.
    Lee, Y.
    SOLID OXIDE FUEL CELLS 15 (SOFC-XV), 2017, 78 (01): : 3123 - 3128
  • [28] Electrochemical characterization and mechanism analysis of high temperature Co-electrolysis of CO2 and H2O in a solid oxide electrolysis cell
    Zhang, Wenqiang
    Zheng, Yun
    Yu, Bo
    Wang, Jianchen
    Chen, Jing
    INTERNATIONAL JOURNAL OF HYDROGEN ENERGY, 2017, 42 (50) : 29911 - 29920
  • [29] The development of solid oxide co-electrolysis of H2O and CO2 on large-size cells and stacks
    Liang, Jingjing
    Zhu, Jianzhong
    Han, Minfang
    Hua, Xiufu
    Li, Duruo
    Ni, Meng
    iEnergy, 2023, 2 (02): : 109 - 118
  • [30] Numerical investigation of a novel design for an elliptical channel solid oxide electrolysis cell for CO2/H2O Co-Electrolysis
    Tu, Yachao
    Zhang, Zhonggang
    Lin, Haoxiang
    Cai, Weiqiang
    FUEL, 2025, 385