Electrochemical characterization and mechanism analysis of high temperature Co-electrolysis of CO2 and H2O in a solid oxide electrolysis cell

被引:25
|
作者
Zhang, Wenqiang [1 ]
Zheng, Yun [1 ]
Yu, Bo [1 ]
Wang, Jianchen [1 ]
Chen, Jing [1 ]
机构
[1] Tsinghua Univ, Collaborat Innovat Ctr Adv Nucl Energy Technol, Inst Nucl & Neucl Energy Technol, Beijing 100084, Peoples R China
关键词
High temperature co-electrolysis; Solid oxide electrolysis cells; Carbon neutral; Syngas production; CARBON-DIOXIDE; THERMODYNAMIC ANALYSIS; FUELS; EFFICIENCY; REDUCTION; IMPEDANCE; ANODE; STEAM;
D O I
10.1016/j.ijhydene.2017.06.225
中图分类号
O64 [物理化学(理论化学)、化学物理学];
学科分类号
070304 ; 081704 ;
摘要
Flexible nuclear power for synthetic fuel production through high temperature co-electrolysis technology (HTCE) using solid oxide electrolysis cell (SOEC) has recently received increasing international interest in the large-scale, highly efficient and carbon neutral energy storage field. It is of great importance to enhancing the understanding of co-electrolysis process and the related mechanism. In this paper, CO2 behavior and its effect on the performance of SOEC were examined by the electrochemical characterization and impedance analysis to determine the proper operating conditions, such as H2O, CO2, H-2, CO, operation temperature and electrolysis current. The polarization mechanism is also investigated by the experimental and modeling results. It was found that the electrolysis of CO2 is much harder than that of H2O, and the ASR of pure CO2 electrolysis is about three times that of H2O. When the CO2 content decreases from 50% to 10%, the ASR decreases from 1.59 to 0.90 Omega cm(2). Increasing the H2O content could also improve the electrolysis efficiency to some degree, while the CO addition in the inlet gas was not favorable for the process. Mechanism study shows that the diffusion impedance of CO2 should be the restricted step for the polarization energy loss. (C) 2017 Hydrogen Energy Publications LLC. Published by Elsevier Ltd. All rights reserved.
引用
收藏
页码:29911 / 29920
页数:10
相关论文
共 50 条
  • [1] Electrochemical characterization of electrolyte supported solid oxide electrolysis cell during CO2/H2O co-electrolysis
    Shirasangi, Rahulkumar
    Dasari, Hari Prasad
    Saidutta, M. B.
    [J]. JOURNAL OF SOLID STATE ELECTROCHEMISTRY, 2024, 28 (06) : 1773 - 1784
  • [2] H2O/CO2 co-electrolysis in solid oxide electrolysis cells
    Han Minfang
    Fan Hui
    Peng Suping
    [J]. Engineering Sciences, 2014, 12 (01) : 43 - 50
  • [3] High temperature solid oxide H2O/CO2 co-electrolysis for syngas production
    Wang, Yao
    Liu, Tong
    Lei, Libin
    Chen, Fanglin
    [J]. FUEL PROCESSING TECHNOLOGY, 2017, 161 : 248 - 258
  • [4] Co-electrolysis of H2O and CO2 in a solid oxide electrolysis cell with hierarchically structured porous electrodes
    Yang, Chenghao
    Li, Jiao
    Newkirk, James
    Baish, Valerie
    Hu, Renzong
    Chen, Yu
    Chen, Fanglin
    [J]. JOURNAL OF MATERIALS CHEMISTRY A, 2015, 3 (31) : 15913 - 15919
  • [5] Co-electrolysis of CO2 and H2O in high-temperature solid oxide electrolysis cells: Recent advance in cathodes
    Xiaomin Zhang
    Yuefeng Song
    Guoxiong Wang
    Xinhe Bao
    [J]. Journal of Energy Chemistry, 2017, 26 (05) : 839 - 853
  • [6] Infiltrated mesoporous oxygen electrodes for high temperature co-electrolysis of H2O and CO2 in solid oxide electrolysis cells
    Hernandez, E.
    Baiutti, F.
    Morata, A.
    Torrell, M.
    Tarancon, A.
    [J]. JOURNAL OF MATERIALS CHEMISTRY A, 2018, 6 (20) : 9699 - 9707
  • [7] Co-electrolysis of CO2 and H2O in high-temperature solid oxide electrolysis cells: Recent advance in cathodes
    Zhang, Xiaomin
    Song, Yuefeng
    Wang, Guoxiong
    Bao, Xinhe
    [J]. JOURNAL OF ENERGY CHEMISTRY, 2017, 26 (05) : 839 - 853
  • [8] Operating maps of high temperature H2O electrolysis and H2O+CO2 co-electrolysis in solid oxide cells
    Aicart, J.
    Usseglio-Viretta, F.
    Laurencin, J.
    Petitjean, M.
    Delette, G.
    Dessemond, L.
    [J]. INTERNATIONAL JOURNAL OF HYDROGEN ENERGY, 2016, 41 (39) : 17233 - 17246
  • [9] Experimental Characterization and Theoretical Modeling of Methane Production by H2O/CO2 Co-Electrolysis in a Tubular Solid Oxide Electrolysis Cell
    Luo, Y.
    Li, W.
    Shi, Y.
    Cao, T.
    Ye, X.
    Wang, S.
    Cai, N.
    [J]. JOURNAL OF THE ELECTROCHEMICAL SOCIETY, 2015, 162 (10) : F1129 - F1134
  • [10] Electrochemical performance and durability of flat-tube solid oxide electrolysis cells for H2O/CO2 co-electrolysis
    Xi, Chengqiao
    Sang, Junkang
    Wu, Anqi
    Yang, Jun
    Qi, Xiaopeng
    Guan, Wanbing
    Wang, Jianxin
    Singhal, Subhash C.
    [J]. INTERNATIONAL JOURNAL OF HYDROGEN ENERGY, 2022, 47 (18) : 10166 - 10174