Radial extensions in fractional Sobolev spaces

被引:1
|
作者
Brezis, H. [1 ,2 ,3 ]
Mironescu, P. [4 ]
Shafrir, I. [2 ]
机构
[1] Rutgers State Univ, Hill Ctr, Dept Math, Busch Campus,110 Frelinghuysen Rd, Piscataway, NJ 08854 USA
[2] Technion Israel Inst Technol, Dept Math, IL-32000 Haifa, Israel
[3] Technion Israel Inst Technol, Dept Comp Sci, IL-32000 Haifa, Israel
[4] Univ Lyon 1, Univ Lyon, CNRS, Inst Camille Jordan,UMR 5208, 43,Blvd 11 Novembre 1918, F-69622 Villeurbanne, France
关键词
Sobolev spaces; Fractional Sobolev spaces; Radial extensions;
D O I
10.1007/s13398-018-0510-3
中图分类号
O1 [数学];
学科分类号
0701 ; 070101 ;
摘要
Given f : partial derivative (-1, 1)(n) -> R, consider its radial extension Tf(X) := f (X / parallel to X parallel to infinity), for all X is an element of [-1, 1](n)backslash {0}. Brezis and Mironescu (RACSAM Rev. R. Acad. Cienc. Exactas Fis. Nat. Ser. A Mat. 95: 121-143, 2001), stated the following auxiliary result (Lemma D.1). If 0 < s < 1, 1 < p < infinity and n >= 2 are such 1 < sp < n, then f vertical bar -> Tf is a bounded linear operator from W-s,W-p (partial derivative(-1, 1)(n)) into W-s,W-p ((-1,1)(n)). The proof of this result contained a flaw detected by Shafrir. We present a correct proof. We also establish a variant of this result involving higher order derivatives and more general radial extension operators. More specifically, let B be the unit ball for the standard Euclidean norm vertical bar vertical bar in R-n, and set U(a)f(X) := vertical bar X vertical bar(a) f (X/vertical bar X vertical bar), for all X is an element of (B) over bar backslash{0}, for all f : partial derivative B -> R. Let a is an element of R, s > 0, 1 <= p < infinity and n >= 2 be such that (s - a) p < n. Then F vertical bar -> U(a)f is a bounded linear operator from W-s,W-p (partial derivative B) into W-s,W-p (B).
引用
收藏
页码:707 / 714
页数:8
相关论文
共 50 条
  • [1] Radial extensions in fractional Sobolev spaces
    H. Brezis
    P. Mironescu
    I. Shafrir
    Revista de la Real Academia de Ciencias Exactas, Físicas y Naturales. Serie A. Matemáticas, 2019, 113 : 707 - 714
  • [2] On fractional Orlicz–Sobolev spaces
    Angela Alberico
    Andrea Cianchi
    Luboš Pick
    Lenka Slavíková
    Analysis and Mathematical Physics, 2021, 11
  • [3] Tempered fractional Sobolev spaces
    Wei, Zhiqiang
    Wang, Yejuan
    Caraballo, Tomas
    BULLETIN DES SCIENCES MATHEMATIQUES, 2024, 196
  • [4] Fractional Sobolev spaces and topology
    Bousquet, Pierre
    NONLINEAR ANALYSIS-THEORY METHODS & APPLICATIONS, 2008, 68 (04) : 804 - 827
  • [5] MULTIPLIERS ON FRACTIONAL SOBOLEV SPACES
    STRICHARTZ, RS
    JOURNAL OF MATHEMATICS AND MECHANICS, 1967, 16 (09): : 1031 - +
  • [6] Composition in fractional Sobolev spaces
    Brezis, H
    Mironescu, P
    DISCRETE AND CONTINUOUS DYNAMICAL SYSTEMS, 2001, 7 (02) : 241 - 246
  • [7] Fractional Sobolev embedding with radial potential
    Su, Yu
    Feng, Zhaosheng
    JOURNAL OF DIFFERENTIAL EQUATIONS, 2022, 340 : 1 - 44
  • [8] Gagliardo-Nirenberg inequalities in fractional Coulomb-Sobolev spaces for radial functions
    Mallick, Arka
    Nguyen, Hoai-Minh
    MATHEMATISCHE ZEITSCHRIFT, 2025, 309 (02)
  • [9] Sobolev Extensions of Lipschitz Mappings into Metric Spaces
    Zimmerman, Scott
    INTERNATIONAL MATHEMATICS RESEARCH NOTICES, 2019, 2019 (08) : 2241 - 2265
  • [10] Sobolev-type Lp-approximation orders of radial basis function interpolation to functions in fractional Sobolev spaces
    Lee, Mun Bae
    Lee, Yeon Ju
    Yoon, Jungho
    IMA JOURNAL OF NUMERICAL ANALYSIS, 2012, 32 (01) : 279 - 293