Radial extensions in fractional Sobolev spaces

被引:1
|
作者
Brezis, H. [1 ,2 ,3 ]
Mironescu, P. [4 ]
Shafrir, I. [2 ]
机构
[1] Rutgers State Univ, Hill Ctr, Dept Math, Busch Campus,110 Frelinghuysen Rd, Piscataway, NJ 08854 USA
[2] Technion Israel Inst Technol, Dept Math, IL-32000 Haifa, Israel
[3] Technion Israel Inst Technol, Dept Comp Sci, IL-32000 Haifa, Israel
[4] Univ Lyon 1, Univ Lyon, CNRS, Inst Camille Jordan,UMR 5208, 43,Blvd 11 Novembre 1918, F-69622 Villeurbanne, France
关键词
Sobolev spaces; Fractional Sobolev spaces; Radial extensions;
D O I
10.1007/s13398-018-0510-3
中图分类号
O1 [数学];
学科分类号
0701 ; 070101 ;
摘要
Given f : partial derivative (-1, 1)(n) -> R, consider its radial extension Tf(X) := f (X / parallel to X parallel to infinity), for all X is an element of [-1, 1](n)backslash {0}. Brezis and Mironescu (RACSAM Rev. R. Acad. Cienc. Exactas Fis. Nat. Ser. A Mat. 95: 121-143, 2001), stated the following auxiliary result (Lemma D.1). If 0 < s < 1, 1 < p < infinity and n >= 2 are such 1 < sp < n, then f vertical bar -> Tf is a bounded linear operator from W-s,W-p (partial derivative(-1, 1)(n)) into W-s,W-p ((-1,1)(n)). The proof of this result contained a flaw detected by Shafrir. We present a correct proof. We also establish a variant of this result involving higher order derivatives and more general radial extension operators. More specifically, let B be the unit ball for the standard Euclidean norm vertical bar vertical bar in R-n, and set U(a)f(X) := vertical bar X vertical bar(a) f (X/vertical bar X vertical bar), for all X is an element of (B) over bar backslash{0}, for all f : partial derivative B -> R. Let a is an element of R, s > 0, 1 <= p < infinity and n >= 2 be such that (s - a) p < n. Then F vertical bar -> U(a)f is a bounded linear operator from W-s,W-p (partial derivative B) into W-s,W-p (B).
引用
收藏
页码:707 / 714
页数:8
相关论文
共 50 条
  • [31] Borderline Case of Traces and Extensions for Weighted Sobolev Spaces
    Man Zi HUANG
    Xian Tao WANG
    Zhuang WANG
    Zhi Hao XU
    ActaMathematicaSinica,EnglishSeries, 2023, (09) : 1817 - 1833
  • [32] Borderline Case of Traces and Extensions for Weighted Sobolev Spaces
    Man Zi Huang
    Xian Tao Wang
    Zhuang Wang
    Zhi Hao Xu
    Acta Mathematica Sinica, English Series, 2023, 39 : 1817 - 1833
  • [33] ON COMPACT EMBEDDINGS OF RADIAL SOBOLEV SPACES AND THEIR APPLICATIONS
    CHABROWSKI, J
    COMMUNICATIONS IN PARTIAL DIFFERENTIAL EQUATIONS, 1992, 17 (5-6) : 941 - 952
  • [34] Sobolev, BV and perimeter extensions in metric measure spaces
    Caputo, Emanuele
    Koivu, Jesse
    Rajala, Tapio
    ANNALES FENNICI MATHEMATICI, 2024, 49 (01): : 135 - 165
  • [35] WEIGHTED ANISOTROPIC SOBOLEV SPACES ON DOMAINS - EXTENSIONS AND TRACES
    TRIEBEL, H
    MATHEMATISCHE NACHRICHTEN, 1984, 119 : 309 - 319
  • [36] Time-fractional diffusion equation in the fractional Sobolev spaces
    Rudolf Gorenflo
    Yuri Luchko
    Masahiro Yamamoto
    Fractional Calculus and Applied Analysis, 2015, 18 : 799 - 820
  • [37] TIME-FRACTIONAL DIFFUSION EQUATION IN THE FRACTIONAL SOBOLEV SPACES
    Gorenflo, Rudolf
    Luchko, Yuri
    Yamamoto, Masahiro
    FRACTIONAL CALCULUS AND APPLIED ANALYSIS, 2015, 18 (03) : 799 - 820
  • [38] Weighted fractional Sobolev spaces as interpolation spaces in bounded domains
    Acosta, Gabriel
    Drelichman, Irene
    Duran, Ricardo G. G.
    MATHEMATISCHE NACHRICHTEN, 2023, 296 (09) : 4374 - 4385
  • [39] Embeddings of the fractional Sobolev spaces on metric-measure spaces
    Gorka, Przemyslaw
    Slabuszewski, Artur
    NONLINEAR ANALYSIS-THEORY METHODS & APPLICATIONS, 2022, 221
  • [40] Embeddings of the fractional Sobolev spaces on metric-measure spaces
    Gorka, Przemyslaw
    Slabuszewski, Artur
    NONLINEAR ANALYSIS-THEORY METHODS & APPLICATIONS, 2022, 221