Ergodic crossover in partially self-avoiding stochastic walks

被引:1
|
作者
Berbert, Juliana M. [1 ]
Gonzalez, Rodrigo Silva [2 ]
Martinez, Alexandre Souto [3 ]
机构
[1] Univ Estadual Paulista UNESP, IFT, BR-01156970 Sao Paulo, Brazil
[2] Univ Fed Vicosa, Inst Ciencias Exatas & Tecnol, BR-38810000 Rio Paranaiba, MG, Brazil
[3] Univ Sao Paulo, FFCLRP, BR-14040901 Ribeirao Preto, SP, Brazil
来源
PHYSICAL REVIEW E | 2013年 / 88卷 / 03期
基金
巴西圣保罗研究基金会;
关键词
OPTIMIZATION; PHYSICS;
D O I
10.1103/PhysRevE.88.032119
中图分类号
O35 [流体力学]; O53 [等离子体物理学];
学科分类号
070204 ; 080103 ; 080704 ;
摘要
Consider a one-dimensional environment with N randomly distributed sites. An agent explores this random medium moving deterministically with a spatial memory mu. A crossover from local to global exploration occurs in one dimension at a well-defined memory value mu(1) = log(2) N. In its stochastic version, the dynamics is ruled by the memory and by temperature T, which affects the hopping displacement. This dynamics also shows a crossover in one dimension, obtained computationally, between exploration schemes, characterized yet by the trajectory size (N-p) (aging effect). In this paper we provide an analytical approach considering the modified stochastic version where the parameter T plays the role of a maximum hopping distance. This modification allows us to obtain a general analytical expression for the crossover, as a function of the parameters mu, T, and N-p. Differently from what has been proposed by previous studies, we find that the crossover occurs in any dimension d. These results have been validated by numerical experiments and may be of great value for fixing optimal parameters in search algorithms.
引用
收藏
页数:8
相关论文
共 50 条
  • [41] Crossover between linear and nonlinear elastic behaviors in random and self-avoiding walks
    Masatsuji, Satoru
    Nakagawa, Natsuko
    Ohno, Kaoru
    MACROMOLECULES, 2008, 41 (11) : 4037 - 4041
  • [42] Strictly Two-Dimensional Self-Avoiding Walks: Density Crossover Scaling
    Schulmann, N.
    Meyer, H.
    Kreer, T.
    Cavallo, A.
    Johner, A.
    Baschnagel, J.
    Wittmer, J. P.
    POLYMER SCIENCE SERIES C, 2013, 55 (01) : 181 - 211
  • [43] Exponents of intrachain correlation for self-avoiding walks and knotted self-avoiding polygons
    Uehara, Erica
    Deguchi, Tetsuo
    JOURNAL OF PHYSICS A-MATHEMATICAL AND THEORETICAL, 2013, 46 (34)
  • [44] Enumeration of compact self-avoiding walks
    Jensen, I
    COMPUTER PHYSICS COMMUNICATIONS, 2001, 142 (1-3) : 109 - 113
  • [45] FURTHER RESULTS ON SELF-AVOIDING WALKS
    TEMPERLEY, HNV
    PHYSICA A, 1994, 206 (3-4): : 350 - 358
  • [46] COUNTING THEOREMS FOR SELF-AVOIDING WALKS
    CHAY, TR
    JOURNAL OF POLYMER SCIENCE PART B-POLYMER PHYSICS, 1972, 10 (12) : 2391 - 2396
  • [47] SELF-AVOIDING WALKS ON A TRIANGULAR LATTICE
    GAGUNASHVILI, ND
    PRIEZZHEV, VB
    THEORETICAL AND MATHEMATICAL PHYSICS, 1978, 35 (03) : 494 - 498
  • [48] SELF-AVOIDING WALKS ON RANDOM LATTICES
    HARRIS, AB
    ZEITSCHRIFT FUR PHYSIK B-CONDENSED MATTER, 1983, 49 (04): : 347 - 349
  • [49] SPIRALING DIRECTED SELF-AVOIDING WALKS
    KIM, S
    JOURNAL OF PHYSICS A-MATHEMATICAL AND GENERAL, 1994, 27 (20): : 6697 - 6701
  • [50] Strictly two-dimensional self-avoiding walks: Density crossover scaling
    N. Schulmann
    H. Meyer
    T. Kreer
    A. Cavallo
    A. Johner
    J. Baschnagel
    J. P. Wittmer
    Polymer Science Series C, 2013, 55 : 181 - 211