Ergodic crossover in partially self-avoiding stochastic walks

被引:1
|
作者
Berbert, Juliana M. [1 ]
Gonzalez, Rodrigo Silva [2 ]
Martinez, Alexandre Souto [3 ]
机构
[1] Univ Estadual Paulista UNESP, IFT, BR-01156970 Sao Paulo, Brazil
[2] Univ Fed Vicosa, Inst Ciencias Exatas & Tecnol, BR-38810000 Rio Paranaiba, MG, Brazil
[3] Univ Sao Paulo, FFCLRP, BR-14040901 Ribeirao Preto, SP, Brazil
来源
PHYSICAL REVIEW E | 2013年 / 88卷 / 03期
基金
巴西圣保罗研究基金会;
关键词
OPTIMIZATION; PHYSICS;
D O I
10.1103/PhysRevE.88.032119
中图分类号
O35 [流体力学]; O53 [等离子体物理学];
学科分类号
070204 ; 080103 ; 080704 ;
摘要
Consider a one-dimensional environment with N randomly distributed sites. An agent explores this random medium moving deterministically with a spatial memory mu. A crossover from local to global exploration occurs in one dimension at a well-defined memory value mu(1) = log(2) N. In its stochastic version, the dynamics is ruled by the memory and by temperature T, which affects the hopping displacement. This dynamics also shows a crossover in one dimension, obtained computationally, between exploration schemes, characterized yet by the trajectory size (N-p) (aging effect). In this paper we provide an analytical approach considering the modified stochastic version where the parameter T plays the role of a maximum hopping distance. This modification allows us to obtain a general analytical expression for the crossover, as a function of the parameters mu, T, and N-p. Differently from what has been proposed by previous studies, we find that the crossover occurs in any dimension d. These results have been validated by numerical experiments and may be of great value for fixing optimal parameters in search algorithms.
引用
收藏
页数:8
相关论文
共 50 条
  • [21] The Language of Self-Avoiding Walks
    Lindorfer, Christian
    Woess, Wolfgang
    COMBINATORICA, 2020, 40 (05) : 691 - 720
  • [22] Self-Avoiding Walks on the UIPQ
    Caraceni, Alessandra
    Curien, Nicolas
    SOJOURNS IN PROBABILITY THEORY AND STATISTICAL PHYSICS - III: INTERACTING PARTICLE SYSTEMS AND RANDOM WALKS, A FESTSCHRIFT FOR CHARLES M. NEWMAN, 2019, 300 : 138 - 165
  • [23] Self-avoiding walks with writhe
    Moroz, JD
    Kamien, RD
    NUCLEAR PHYSICS B, 1997, 506 (03) : 695 - 710
  • [24] Self-avoiding walks in a rectangle
    Guttmann, Anthony J.
    Kennedy, Tom
    JOURNAL OF ENGINEERING MATHEMATICS, 2014, 84 (01) : 201 - 208
  • [25] Locally self-avoiding walks
    Iagolnitzer, D
    Magnen, J
    FUNCTIONAL INTEGRATION: BASICS AND APPLICATIONS, 1997, 361 : 309 - 325
  • [26] SELF-AVOIDING WALKS IN WEDGES
    HAMMERSLEY, JM
    WHITTINGTON, SG
    JOURNAL OF PHYSICS A-MATHEMATICAL AND GENERAL, 1985, 18 (01): : 101 - 111
  • [27] The Language of Self-Avoiding Walks
    Christian Lindorfer
    Wolfgang Woess
    Combinatorica, 2020, 40 : 691 - 720
  • [28] Weighted self-avoiding walks
    Grimmett, Geoffrey R.
    Li, Zhongyang
    JOURNAL OF ALGEBRAIC COMBINATORICS, 2020, 52 (01) : 77 - 102
  • [29] Anisotropic self-avoiding walks
    Borgs, C
    Chayes, J
    King, C
    Madras, N
    JOURNAL OF MATHEMATICAL PHYSICS, 2000, 41 (03) : 1321 - 1337
  • [30] KNOTS IN SELF-AVOIDING WALKS
    SUMNERS, DW
    WHITTINGTON, SG
    JOURNAL OF PHYSICS A-MATHEMATICAL AND GENERAL, 1988, 21 (07): : 1689 - 1694