Tetravalent vertex-transitive graphs of order 4p

被引:8
|
作者
Zhou, Jin-Xin [1 ]
机构
[1] Beijing Jiaotong Univ, Dept Math, Beijing 100044, Peoples R China
基金
中国国家自然科学基金;
关键词
Cayley graph; vertex-transitive graph; automorphism group; NON-CAYLEY GRAPHS; SYMMETRIC GRAPHS; PRIME; TWICE; AUTOMORPHISMS; VERTICES; PRODUCT; SQUARE; COVERS;
D O I
10.1002/jgt.20653
中图分类号
O1 [数学];
学科分类号
0701 ; 070101 ;
摘要
A graph is vertex-transitive if its automorphism group acts transitively on vertices of the graph. A vertex-transitive graph is a Cayley graph if its automorphism group contains a subgroup acting regularly on its vertices. In this article, the tetravalent vertex-transitive non-Cayley graphs of order 4p are classified for each prime p. As a result, there are one sporadic and five infinite families of such graphs, of which the sporadic one has order 20, and one infinite family exists for every prime p>3, two families exist if and only if p=1 (mod 8) and the other two families exist if and only if p=1 (mod 4). For each family there is a unique graph for a given order.(C)2011 Wiley Periodicals, Inc.
引用
收藏
页码:402 / 415
页数:14
相关论文
共 50 条
  • [41] Classification of vertex-transitive graphs of order a prime cubed - I
    Dobson, E
    DISCRETE MATHEMATICS, 2000, 224 (1-3) : 99 - 106
  • [42] Cubic vertex-transitive non-Cayley graphs of order 12p
    Wei-Juan Zhang
    Yan-Quan Feng
    Jin-Xin Zhou
    Science China(Mathematics), 2018, 61 (06) : 1153 - 1162
  • [43] Cubic vertex-transitive non-Cayley graphs of order 12p
    Zhang, Wei-Juan
    Feng, Yan-Quan
    Zhou, Jin-Xin
    SCIENCE CHINA-MATHEMATICS, 2018, 61 (06) : 1153 - 1162
  • [44] MATCHINGS IN VERTEX-TRANSITIVE BIPARTITE GRAPHS
    Csikvari, Peter
    ISRAEL JOURNAL OF MATHEMATICS, 2016, 215 (01) : 99 - 134
  • [45] A Note on Vertex-transitive Kahler graphs
    Tuerxunmaimaiti, Yaermaimaiti
    Adachi, Toshiaki
    HOKKAIDO MATHEMATICAL JOURNAL, 2016, 45 (03) : 419 - 433
  • [46] Vertex-transitive Diameter Two Graphs
    Wei JIN
    Li TAN
    ActaMathematicaeApplicataeSinica, 2022, 38 (01) : 209 - 222
  • [47] On local expansion of vertex-transitive graphs
    Lukacs, A
    COMBINATORICS PROBABILITY & COMPUTING, 1998, 7 (02): : 205 - 209
  • [48] Vertex-transitive Diameter Two Graphs
    Wei Jin
    Li Tan
    Acta Mathematicae Applicatae Sinica, English Series, 2022, 38 : 209 - 222
  • [49] THE MAXIMUM GENUS OF VERTEX-TRANSITIVE GRAPHS
    SKOVIERA, M
    NEDELA, R
    DISCRETE MATHEMATICS, 1989, 78 (1-2) : 179 - 186
  • [50] LONG CYCLES IN VERTEX-TRANSITIVE GRAPHS
    BABAI, L
    JOURNAL OF GRAPH THEORY, 1979, 3 (03) : 301 - 304