Tetravalent vertex-transitive graphs of order 4p

被引:8
|
作者
Zhou, Jin-Xin [1 ]
机构
[1] Beijing Jiaotong Univ, Dept Math, Beijing 100044, Peoples R China
基金
中国国家自然科学基金;
关键词
Cayley graph; vertex-transitive graph; automorphism group; NON-CAYLEY GRAPHS; SYMMETRIC GRAPHS; PRIME; TWICE; AUTOMORPHISMS; VERTICES; PRODUCT; SQUARE; COVERS;
D O I
10.1002/jgt.20653
中图分类号
O1 [数学];
学科分类号
0701 ; 070101 ;
摘要
A graph is vertex-transitive if its automorphism group acts transitively on vertices of the graph. A vertex-transitive graph is a Cayley graph if its automorphism group contains a subgroup acting regularly on its vertices. In this article, the tetravalent vertex-transitive non-Cayley graphs of order 4p are classified for each prime p. As a result, there are one sporadic and five infinite families of such graphs, of which the sporadic one has order 20, and one infinite family exists for every prime p>3, two families exist if and only if p=1 (mod 8) and the other two families exist if and only if p=1 (mod 4). For each family there is a unique graph for a given order.(C)2011 Wiley Periodicals, Inc.
引用
收藏
页码:402 / 415
页数:14
相关论文
共 50 条
  • [21] Presentations for vertex-transitive graphs
    Agelos Georgakopoulos
    Alex Wendland
    Journal of Algebraic Combinatorics, 2022, 55 : 795 - 826
  • [22] STRUCTURE OF VERTEX-TRANSITIVE GRAPHS
    GREEN, AC
    JOURNAL OF COMBINATORIAL THEORY SERIES B, 1975, 18 (01) : 1 - 11
  • [23] On Isomorphisms of Vertex-transitive Graphs
    Chen, Jing
    Xia, Binzhou
    ELECTRONIC JOURNAL OF COMBINATORICS, 2016, 23 (02):
  • [24] Hamilton paths and cycles in vertex-transitive graphs of order 6p
    Kutnar, Klavdija
    Sparl, Primoz
    DISCRETE MATHEMATICS, 2009, 309 (17) : 5444 - 5460
  • [25] Semiregular automorphisms in vertex-transitive graphs of order 3p2
    Marusic, Dragan
    ELECTRONIC JOURNAL OF COMBINATORICS, 2018, 25 (02):
  • [26] On Tetravalent Vertex-Transitive Bi-Circulants
    Qiao, Sha
    Zhou, Jin-Xin
    INDIAN JOURNAL OF PURE & APPLIED MATHEMATICS, 2020, 51 (01): : 277 - 288
  • [27] Presentations for vertex-transitive graphs
    Georgakopoulos, Agelos
    Wendland, Alex
    JOURNAL OF ALGEBRAIC COMBINATORICS, 2022, 55 (03) : 795 - 826
  • [28] Mobility of vertex-transitive graphs
    Potocnik, Primoz
    Sajna, Mateja
    Verret, Gabriel
    DISCRETE MATHEMATICS, 2007, 307 (3-5) : 579 - 591
  • [29] On Tetravalent Vertex-Transitive Bi-Circulants
    Sha Qiao
    Jin-Xin Zhou
    Indian Journal of Pure and Applied Mathematics, 2020, 51 : 277 - 288
  • [30] An overview on vertex stabilizers in vertex-transitive graphs
    Spiga, Pablo
    BOLLETTINO DELLA UNIONE MATEMATICA ITALIANA, 2025, 18 (01): : 327 - 346