Optimizing Learning Path Selection through Memetic Algorithms

被引:15
|
作者
Acampora, Giovanni [1 ]
Gaeta, Matteo [2 ]
Loia, Vincenzo [1 ]
Ritrovato, Pierluigi [2 ]
Salerno, Saverio [2 ]
机构
[1] Univ Salerno, Dipartimento Matemat & Informat, I-84084 Salerno, Italy
[2] Univ Salerno, Dipartimento Ingn Informaz Matemat Appl, I-84084 Salerno, Italy
关键词
D O I
10.1109/IJCNN.2008.4634354
中图分类号
TP18 [人工智能理论];
学科分类号
081104 ; 0812 ; 0835 ; 1405 ;
摘要
e-Learning is a critical support mechanism for industrial and academic organizations to enhance the skills of employees and students and, consequently, the overall competitiveness in the new economy. The remarkable velocity and volatility of modern knowledge require novel learning methods offering additional features as efficiency, task relevance and personalization. The main aim of adaptive e-Learning is to support content and activities, personalized to specific needs and influenced by specific preferences of the learner. This paper describes a collection of models and processes for adapting an e-Learning system to the learner expectations and to formulate objectives in a dynamic intelligent way. Precisely, our proposal exploits ontological representations of learning environment and a memetic optimization algorithm capable of generating the best learning presentation in an efficient and qualitative way.
引用
收藏
页码:3869 / +
页数:2
相关论文
共 50 条
  • [1] Feature Selection using Memetic Algorithms
    Yang, Cheng-San
    Chuang, Li-Yeh
    Chen, Yu-Jung
    Yang, Cheng-Hong
    [J]. THIRD 2008 INTERNATIONAL CONFERENCE ON CONVERGENCE AND HYBRID INFORMATION TECHNOLOGY, VOL 1, PROCEEDINGS, 2008, : 416 - +
  • [2] Local learning and search in memetic algorithms
    Guimaraes, Frederico G.
    Wanner, Elizabeth F.
    Campelo, Felipe
    Takahashi, Ricardo H. C.
    Igarashi, Hajime
    Lowther, David A.
    Ramirez, Jaime A.
    [J]. 2006 IEEE CONGRESS ON EVOLUTIONARY COMPUTATION, VOLS 1-6, 2006, : 2921 - +
  • [3] LOCALIZING THE IRIS THROUGH MEMETIC ALGORITHMS
    Carneiro, Milena Bueno P.
    Veiga, Antonio Claudio P.
    de Castro, Fernando C.
    Flores, Edna Lucia
    Carrijo, Gilberto A.
    [J]. APPLIED ARTIFICIAL INTELLIGENCE, 2009, 23 (08) : 738 - 757
  • [4] Memetic algorithms for feature selection on microarray data
    Zhu, Zexuan
    Ong, Yew-Soon
    [J]. ADVANCES IN NEURAL NETWORKS - ISNN 2007, PT 1, PROCEEDINGS, 2007, 4491 : 1327 - +
  • [5] Improving Ontology Alignment through Memetic Algorithms
    Acampora, Giovanni
    Avella, Pasquale
    Loia, Vincenzo
    Salerno, Saverio
    Vitiello, Autilia
    [J]. IEEE INTERNATIONAL CONFERENCE ON FUZZY SYSTEMS (FUZZ 2011), 2011, : 1783 - 1790
  • [6] Cutting path as a Rural Postman Problem: solutions by Memetic Algorithms
    Maria Rodrigues, Ana
    Soeiro Ferreira, Jose
    [J]. INTERNATIONAL JOURNAL OF COMBINATORIAL OPTIMIZATION PROBLEMS AND INFORMATICS, 2012, 3 (01): : 31 - 46
  • [7] Meta-Lamarckian learning in memetic algorithms
    Ong, YS
    Keane, AJ
    [J]. IEEE TRANSACTIONS ON EVOLUTIONARY COMPUTATION, 2004, 8 (02) : 99 - 110
  • [8] Optimizing Knowledge Tracking and Learning Path Planning Through Virtual Interactions
    Zhao, Hui
    Nie, Chang
    Liu, Jun
    Sun, Jun
    [J]. ADVANCED INTELLIGENT COMPUTING TECHNOLOGY AND APPLICATIONS, PT XII, ICIC 2024, 2024, 14873 : 423 - 435
  • [9] Learning Type-2 Fuzzy Rule-Based Systems through Memetic Algorithms
    Acampora, Giovanni
    D'Alterio, Pasquale
    Vitiello, Autilia
    [J]. 2018 IEEE INTERNATIONAL CONFERENCE ON FUZZY SYSTEMS (FUZZ-IEEE), 2018,
  • [10] Optimizing reserve size in genetic algorithms with reserve selection using reinforcement learning
    Chen, Yang
    Hu, Jinglu
    Hirasawa, Kotaro
    Yu, Songnian
    [J]. PROCEEDINGS OF SICE ANNUAL CONFERENCE, VOLS 1-8, 2007, : 1337 - +