First-principles calculations of the lattice thermal conductivity of the lower mantle

被引:47
|
作者
Stackhouse, Stephen [1 ]
Stixrude, Lars [2 ]
Karki, Bijaya B. [3 ,4 ]
机构
[1] Univ Leeds, Sch Earth & Environm, Leeds LS2 9JT, W Yorkshire, England
[2] UCL, Dept Earth Sci, London WC1E 6BT, England
[3] Louisiana State Univ, Dept Geol & Geophys, Sch Elect Engn & Comp Sci, Baton Rouge, LA 70803 USA
[4] Louisiana State Univ, Ctr Computat & Technol, Baton Rouge, LA 70803 USA
基金
美国国家科学基金会; 欧洲研究理事会; 英国工程与自然科学研究理事会;
关键词
MgSiO3; perovskite; thermal conductivity; mantle dynamics; ELECTRON-PHONON INTERACTION; TOTAL-ENERGY CALCULATIONS; MGSIO3; PEROVSKITE; POST-PEROVSKITE; HEAT-FLUX; BOUNDARY-LAYER; MINERALS; PHASE; DIFFUSIVITY; MGO;
D O I
10.1016/j.epsl.2015.06.050
中图分类号
P3 [地球物理学]; P59 [地球化学];
学科分类号
0708 ; 070902 ;
摘要
The temperature variations on top of the core-mantle boundary are governed by the thermal conductivity of the minerals that comprise the overlying mantle. Estimates of the thermal conductivity of the most abundant phase, MgSiO3 perovskite, at core-mantle boundary conditions vary by a factor of ten. We performed ab initio simulations to determine the lattice thermal conductivity of MgSiO3 perovskite, finding a value of 6.8 +/- 0.9 W m(-1) K-1 at core-mantle boundary conditions (136 GPa and 4000 K), consistent with geophysical constraints for the thermal state at the base of the mantle. Thermal conductivity depends strongly on pressure, explaining the dynamical stability of super-plumes. The dependence on temperature and composition is weak in the deep mantle: our results exhibit saturation as the phonon mean free path approaches the interatomic spacing. Combining our results with seismic tomography, we find large lateral variations in the heat-flux from the core that have important implications for core dynamics. (C) 2015 Elsevier B.V. All rights reserved.
引用
收藏
页码:11 / 17
页数:7
相关论文
共 50 条
  • [31] Strain effects on the lattice thermal conductivity of monolayer CrOCl: A first-principles study
    Yu, Ben-Yu
    Sun, Yang
    Cao, Xinrui
    Zhu, Zi-Zhong
    Wu, Shunqing
    Lu, Tie-Yu
    MATERIALS TODAY COMMUNICATIONS, 2024, 38
  • [32] Prediction of Low-Thermal-Conductivity Compounds with First-Principles Anharmonic Lattice-Dynamics Calculations and Bayesian Optimization
    Seko, Atsuto
    Togo, Atsushi
    Hayashi, Hiroyuki
    Tsuda, Koji
    Chaput, Laurent
    Tanaka, Isao
    PHYSICAL REVIEW LETTERS, 2015, 115 (20)
  • [33] Anharmonicity and lattice thermal conductivity of negative thermal expansion materials Zn(CN)2 and Cd(CN)2 by first-principles calculations
    Sun, Ya-Ning
    Wang, Lei
    Wang, Cong
    DALTON TRANSACTIONS, 2025, 54 (02) : 764 - 773
  • [34] First-principles calculations of lattice stability of technetium and rhenium
    Tao Hui-jin
    Chen Wei-min
    Zhou Wen
    Wang He-nan
    TRANSACTIONS OF NONFERROUS METALS SOCIETY OF CHINA, 2009, 19 : S780 - S784
  • [35] First-principles calculations of lattice stability of technetium and rhenium
    陶辉锦
    陈伟民
    周文
    王赫男
    TransactionsofNonferrousMetalsSocietyofChina, 2009, 19(S3) (S3) : 780 - 784
  • [36] First-principles calculations of the thermal expansion of metals
    Quong, A. A.
    Liu, A. Y.
    Physical Review B: Condensed Matter, 1997, 56 (13):
  • [37] First-principles calculations of the thermal expansion of metals
    Quong, AA
    Liu, AY
    PHYSICAL REVIEW B, 1997, 56 (13): : 7767 - 7770
  • [38] Thermal conductivity of silicene from first-principles
    Xie, Han
    Hu, Ming
    Bao, Hua
    APPLIED PHYSICS LETTERS, 2014, 104 (13)
  • [39] Examining the thermal conductivity of the half-Heusler alloy TiNiSn by first-principles calculations
    Ding, Guangqian
    Gao, G. Y.
    Yao, K. L.
    JOURNAL OF PHYSICS D-APPLIED PHYSICS, 2015, 48 (23)
  • [40] Nonmonotonic strain dependence of lattice thermal conductivity in monolayer SiC: a first-principles study
    Guo, San-Dong
    Dong, Jun
    Liu, Jiang-Tao
    PHYSICAL CHEMISTRY CHEMICAL PHYSICS, 2018, 20 (34) : 22038 - 22046