First-principles calculations of the lattice thermal conductivity of the lower mantle

被引:47
|
作者
Stackhouse, Stephen [1 ]
Stixrude, Lars [2 ]
Karki, Bijaya B. [3 ,4 ]
机构
[1] Univ Leeds, Sch Earth & Environm, Leeds LS2 9JT, W Yorkshire, England
[2] UCL, Dept Earth Sci, London WC1E 6BT, England
[3] Louisiana State Univ, Dept Geol & Geophys, Sch Elect Engn & Comp Sci, Baton Rouge, LA 70803 USA
[4] Louisiana State Univ, Ctr Computat & Technol, Baton Rouge, LA 70803 USA
基金
美国国家科学基金会; 欧洲研究理事会; 英国工程与自然科学研究理事会;
关键词
MgSiO3; perovskite; thermal conductivity; mantle dynamics; ELECTRON-PHONON INTERACTION; TOTAL-ENERGY CALCULATIONS; MGSIO3; PEROVSKITE; POST-PEROVSKITE; HEAT-FLUX; BOUNDARY-LAYER; MINERALS; PHASE; DIFFUSIVITY; MGO;
D O I
10.1016/j.epsl.2015.06.050
中图分类号
P3 [地球物理学]; P59 [地球化学];
学科分类号
0708 ; 070902 ;
摘要
The temperature variations on top of the core-mantle boundary are governed by the thermal conductivity of the minerals that comprise the overlying mantle. Estimates of the thermal conductivity of the most abundant phase, MgSiO3 perovskite, at core-mantle boundary conditions vary by a factor of ten. We performed ab initio simulations to determine the lattice thermal conductivity of MgSiO3 perovskite, finding a value of 6.8 +/- 0.9 W m(-1) K-1 at core-mantle boundary conditions (136 GPa and 4000 K), consistent with geophysical constraints for the thermal state at the base of the mantle. Thermal conductivity depends strongly on pressure, explaining the dynamical stability of super-plumes. The dependence on temperature and composition is weak in the deep mantle: our results exhibit saturation as the phonon mean free path approaches the interatomic spacing. Combining our results with seismic tomography, we find large lateral variations in the heat-flux from the core that have important implications for core dynamics. (C) 2015 Elsevier B.V. All rights reserved.
引用
收藏
页码:11 / 17
页数:7
相关论文
共 50 条
  • [21] Lattice dynamics and thermal properties of SrHfO3 by first-principles calculations
    Murata, Hidenobu
    Yamamoto, Tomoyuki
    Moriwake, Hiroki
    Tanaka, Isao
    PHYSICA STATUS SOLIDI B-BASIC SOLID STATE PHYSICS, 2009, 246 (07): : 1628 - 1633
  • [22] Lattice stability and thermal equation of state of β-La from first-principles calculations
    Hu, Cui-E
    Zeng, Zhao-Yi
    Zhang, Lin
    Cai, Ling-Cang
    SOLID STATE COMMUNICATIONS, 2011, 151 (23) : 1802 - 1805
  • [23] Pressure tuning of the thermal conductivity of gallium arsenide from first-principles calculations
    Sun, Zhehao
    Yuan, Kunpeng
    Zhang, Xiaoliang
    Tang, Dawei
    PHYSICAL CHEMISTRY CHEMICAL PHYSICS, 2018, 20 (48) : 30331 - 30339
  • [24] Thermal conductivity of half-Heusler compounds from first-principles calculations
    Shiomi, Junichiro
    Esfarjani, Keivan
    Chen, Gang
    PHYSICAL REVIEW B, 2011, 84 (10)
  • [25] First-principles study on lattice thermal conductivity of thermoelectrics HgTe in different phases
    Ouyang, Tao
    Hu, Ming
    JOURNAL OF APPLIED PHYSICS, 2015, 117 (24)
  • [26] Uncertainty quantification in first-principles predictions of phonon properties and lattice thermal conductivity
    Parks, Holden L.
    Kim, Hyun-Young
    Viswanathan, Venkatasubramanian
    McGaughey, Alan J. H.
    PHYSICAL REVIEW MATERIALS, 2020, 4 (08)
  • [27] Lattice dynamics and thermal conductivity of calcium fluoride via first-principles investigation
    Qi, Yuan-Yuan
    Zhang, Tian
    Cheng, Yan
    Chen, Xiang-Rong
    Wei, Dong-Qing
    Cai, Ling-Cang
    JOURNAL OF APPLIED PHYSICS, 2016, 119 (09)
  • [28] Lattice thermal conductivity of monolayer AsP from first-principles molecular dynamics
    Sun, Yajing
    Shuai, Zhigang
    Wang, Dong
    PHYSICAL CHEMISTRY CHEMICAL PHYSICS, 2018, 20 (20) : 14024 - 14030
  • [29] First-principles study of lattice thermal conductivity of Td-WTe2
    Liu, Gang
    Sun, Hong Yi
    Zhou, Jian
    Li, Qing Fang
    Wan, Xian-Gang
    NEW JOURNAL OF PHYSICS, 2016, 18
  • [30] First-principles study on ultralow lattice thermal conductivity in HfGeTe4
    Zhou, Xiu-Feng
    Zhou, Jian
    MODERN PHYSICS LETTERS B, 2022, 36 (23):