NUMERICAL ANALYSIS OF A DISCONTINUOUS GALERKIN METHOD FOR THE BORRVALL-PETERSSON TOPOLOGY OPTIMIZATION PROBLEM

被引:2
|
作者
Papadopoulos, Ioannis P. A. [1 ]
机构
[1] Univ Oxford, Math Inst, Oxford OX2 6GG, England
基金
英国工程与自然科学研究理事会;
关键词
topology optimization; nonconvex variational problem; multiple solutions; finite element method; discontinuous Galerkin method; MIXED FINITE-ELEMENTS; FLOW; SPACES;
D O I
10.1137/21M1438943
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
Divergence-free discontinuous Galerkin (DG) finite element methods offer a suitable discretization for the pointwise divergence-free numerical solution of Borrvall and Petersson's model for the topology optimization of fluids in Stokes flow [T. Borrvall and J. Petersson, Internat. J. Numer. Methods Fluids, 41 (2003), pp. 77-107]. The convergence results currently found in the literature only consider H-1-conforming discretizations for the velocity. In this work, we extend the numerical analysis of Papadopoulos and Suli to divergence-free DG methods with an interior penalty [I. P. A. Papadopoulos and E. Suli, J. Comput. Appl. Math., 412 (2022), 114295]. We show that, given an isolated minimizer of the infinite-dimensional problem, there exists a sequence of DG finite element solutions, satisfying necessary first-order optimality conditions, that strongly converges to the minimizer.
引用
收藏
页码:2538 / 2564
页数:27
相关论文
共 50 条
  • [31] Adaptive discontinuous Galerkin method for viscoplastic analysis
    Univ of Illinois at Urbana-Champaign, Urbana, United States
    Comput Methods Appl Mech Eng, 1-4 (191-198):
  • [32] Discontinuous Galerkin Isogeometric Analysis of Convection Problem on Surface
    Wang, Liang
    Xiong, Chunguang
    Yuan, Xinpeng
    Wu, Huibin
    MATHEMATICS, 2021, 9 (05) : 1 - 12
  • [33] An adaptive discontinuous Galerkin method for viscoplastic analysis
    Fang, B
    Carranza, FL
    Haber, RB
    COMPUTER METHODS IN APPLIED MECHANICS AND ENGINEERING, 1997, 150 (1-4) : 191 - 198
  • [34] Stability Analysis of Discontinuous Galerkin Approximations to the Elastodynamics Problem
    Antonietti, Paola F.
    de Dios, Blanca Ayuso
    Mazzieri, Ilario
    Quarteroni, Alfio
    JOURNAL OF SCIENTIFIC COMPUTING, 2016, 68 (01) : 143 - 170
  • [35] Local Analysis of the Local Discontinuous Galerkin Method with Generalized Alternating Numerical Flux for One-Dimensional Singularly Perturbed Problem
    Yao Cheng
    Qiang Zhang
    Journal of Scientific Computing, 2017, 72 : 792 - 819
  • [36] Local Analysis of the Local Discontinuous Galerkin Method with Generalized Alternating Numerical Flux for One-Dimensional Singularly Perturbed Problem
    Cheng, Yao
    Zhang, Qiang
    JOURNAL OF SCIENTIFIC COMPUTING, 2017, 72 (02) : 792 - 819
  • [37] Discontinuous galerkin method for numerical simulation of dynamic processes in solids
    Miryaha V.A.
    Sannikov A.V.
    Petrov I.B.
    Mathematical Models and Computer Simulations, 2015, 7 (5) : 446 - 455
  • [38] Numerical treatment of reactive diffusion using the discontinuous Galerkin method
    Wolfgang Flachberger
    Jiri Svoboda
    Thomas Antretter
    Manuel Petersmann
    Silvia Leitner
    Continuum Mechanics and Thermodynamics, 2024, 36 : 61 - 74
  • [39] An unfitted hybridizable discontinuous Galerkin method for the Poisson interface problem and its error analysis
    Dong, Haixia
    Wang, Bo
    Xie, Ziqing
    Wang, Li-Lian
    IMA JOURNAL OF NUMERICAL ANALYSIS, 2017, 37 (01) : 444 - 476
  • [40] LOCAL ANALYSIS OF THE LOCAL DISCONTINUOUS GALERKIN METHOD WITH THE GENERALIZED ALTERNATING NUMERICAL FLUX FOR TWO-DIMENSIONAL SINGULARLY PERTURBED PROBLEM
    Cheng, Yao
    Zhang, Qiang
    Wang, Haijin
    INTERNATIONAL JOURNAL OF NUMERICAL ANALYSIS AND MODELING, 2018, 15 (06) : 785 - 810