NUMERICAL ANALYSIS OF A DISCONTINUOUS GALERKIN METHOD FOR THE BORRVALL-PETERSSON TOPOLOGY OPTIMIZATION PROBLEM

被引:2
|
作者
Papadopoulos, Ioannis P. A. [1 ]
机构
[1] Univ Oxford, Math Inst, Oxford OX2 6GG, England
基金
英国工程与自然科学研究理事会;
关键词
topology optimization; nonconvex variational problem; multiple solutions; finite element method; discontinuous Galerkin method; MIXED FINITE-ELEMENTS; FLOW; SPACES;
D O I
10.1137/21M1438943
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
Divergence-free discontinuous Galerkin (DG) finite element methods offer a suitable discretization for the pointwise divergence-free numerical solution of Borrvall and Petersson's model for the topology optimization of fluids in Stokes flow [T. Borrvall and J. Petersson, Internat. J. Numer. Methods Fluids, 41 (2003), pp. 77-107]. The convergence results currently found in the literature only consider H-1-conforming discretizations for the velocity. In this work, we extend the numerical analysis of Papadopoulos and Suli to divergence-free DG methods with an interior penalty [I. P. A. Papadopoulos and E. Suli, J. Comput. Appl. Math., 412 (2022), 114295]. We show that, given an isolated minimizer of the infinite-dimensional problem, there exists a sequence of DG finite element solutions, satisfying necessary first-order optimality conditions, that strongly converges to the minimizer.
引用
收藏
页码:2538 / 2564
页数:27
相关论文
共 50 条
  • [21] Upscaling for the Laplace problem using a discontinuous Galerkin method
    Barucq, H.
    Chaumont-Frelet, T.
    Diaz, T. J.
    Peron, V.
    JOURNAL OF COMPUTATIONAL AND APPLIED MATHEMATICS, 2013, 240 : 192 - 203
  • [22] A Simple Preconditioner for a Discontinuous Galerkin Method for the Stokes Problem
    Ayuso de Dios, Blanca
    Brezzi, Franco
    Marini, L. Donatella
    Xu, Jinchao
    Zikatanov, Ludmil
    JOURNAL OF SCIENTIFIC COMPUTING, 2014, 58 (03) : 517 - 547
  • [23] A Simple Preconditioner for a Discontinuous Galerkin Method for the Stokes Problem
    Blanca Ayuso de Dios
    Franco Brezzi
    L. Donatella Marini
    Jinchao Xu
    Ludmil Zikatanov
    Journal of Scientific Computing, 2014, 58 : 517 - 547
  • [24] Adaptive numerical solution of a discontinuous Galerkin method for a Helmholtz problem in low-frequency regime
    Barrios, Tomas P.
    Bustinza, Rommel
    Dominguez, Victor
    JOURNAL OF COMPUTATIONAL AND APPLIED MATHEMATICS, 2016, 300 : 312 - 340
  • [25] NUMERICAL EXPERIMENTS WITH A DISCONTINUOUS GALERKIN METHOD INCLUDING MONOTONICITY ENFORCEMENT ON THE STICK-SLIP PROBLEM
    BAAIJENS, FPT
    JOURNAL OF NON-NEWTONIAN FLUID MECHANICS, 1994, 51 (02) : 141 - 159
  • [26] Shape optimization problem for transient Non-Newtonian fluid in hybridized discontinuous Galerkin method
    Nakazawa, Takashi
    JOURNAL OF FLUID SCIENCE AND TECHNOLOGY, 2021, 16 (03): : 1 - 11
  • [27] Numerical studies on a proposed stepwise binarization method for the topology optimization analysis of the sloshing control problem
    Kobayashi, Masaya
    Kurahashi, Takahiko
    JOURNAL OF FLUID SCIENCE AND TECHNOLOGY, 2024, 19 (01): : 1 - 16
  • [28] New formulations and numerical analysis of discontinuous Galerkin methods
    Dutra do Carmo, Eduardo Gomes
    Celani Duarte, Andre Vinicius
    COMPUTATIONAL & APPLIED MATHEMATICS, 2002, 21 (03): : 661 - 715
  • [29] Numerical analysis of the unconditionally stable discontinuous Galerkin schemes for the nonstationary conduction-convection problem
    Hou, Yuanyuan
    Yan, Wenjing
    Jing, Feifei
    COMPUTERS & MATHEMATICS WITH APPLICATIONS, 2020, 80 (06) : 1479 - 1499
  • [30] Stability Analysis of Discontinuous Galerkin Approximations to the Elastodynamics Problem
    Paola F. Antonietti
    Blanca Ayuso de Dios
    Ilario Mazzieri
    Alfio Quarteroni
    Journal of Scientific Computing, 2016, 68 : 143 - 170