NUMERICAL ANALYSIS OF A DISCONTINUOUS GALERKIN METHOD FOR THE BORRVALL-PETERSSON TOPOLOGY OPTIMIZATION PROBLEM

被引:2
|
作者
Papadopoulos, Ioannis P. A. [1 ]
机构
[1] Univ Oxford, Math Inst, Oxford OX2 6GG, England
基金
英国工程与自然科学研究理事会;
关键词
topology optimization; nonconvex variational problem; multiple solutions; finite element method; discontinuous Galerkin method; MIXED FINITE-ELEMENTS; FLOW; SPACES;
D O I
10.1137/21M1438943
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
Divergence-free discontinuous Galerkin (DG) finite element methods offer a suitable discretization for the pointwise divergence-free numerical solution of Borrvall and Petersson's model for the topology optimization of fluids in Stokes flow [T. Borrvall and J. Petersson, Internat. J. Numer. Methods Fluids, 41 (2003), pp. 77-107]. The convergence results currently found in the literature only consider H-1-conforming discretizations for the velocity. In this work, we extend the numerical analysis of Papadopoulos and Suli to divergence-free DG methods with an interior penalty [I. P. A. Papadopoulos and E. Suli, J. Comput. Appl. Math., 412 (2022), 114295]. We show that, given an isolated minimizer of the infinite-dimensional problem, there exists a sequence of DG finite element solutions, satisfying necessary first-order optimality conditions, that strongly converges to the minimizer.
引用
收藏
页码:2538 / 2564
页数:27
相关论文
共 50 条
  • [1] Numerical analysis of a hybridized discontinuous Galerkin method for the Cahn-Hilliard problem
    Kirk, Keegan L. A.
    Riviere, Beatrice
    Masri, Rami
    IMA JOURNAL OF NUMERICAL ANALYSIS, 2023, 44 (05) : 2752 - 2792
  • [2] Numerical solution of the dam-break problem with a discontinuous Galerkin method
    Fagherazzi, S
    Rasetarinera, P
    Hussain, MY
    Furbish, DJ
    JOURNAL OF HYDRAULIC ENGINEERING-ASCE, 2004, 130 (06): : 532 - 539
  • [3] Analysis of a discontinuous Galerkin method for the bending problem of Koiter shell
    Zhang, Sheng
    NUMERISCHE MATHEMATIK, 2016, 133 (02) : 333 - 370
  • [4] Numerical analysis of a stable discontinuous Galerkin scheme for the hydrostatic Stokes problem
    Guillen-Gonzalez, Francisco
    Victoria Redondo-Neble, M.
    Rafael Rodriguez-Galvan, J.
    JOURNAL OF NUMERICAL MATHEMATICS, 2021, 29 (02) : 103 - 118
  • [5] Analysis of a discontinuous Galerkin method for the Biot's consolidation problem
    Chen, Yumei
    Luo, Yan
    Feng, Minfu
    APPLIED MATHEMATICS AND COMPUTATION, 2013, 219 (17) : 9043 - 9056
  • [6] Analysis of a discontinuous Galerkin method for the bending problem of Koiter shell
    Sheng Zhang
    Numerische Mathematik, 2016, 133 : 333 - 370
  • [7] Numerical solution of a one-dimensional inverse problem by the discontinuous Galerkin method
    Epshteyn, Y.
    Khan, T.
    Riviere, B.
    MATHEMATICS AND COMPUTERS IN SIMULATION, 2009, 79 (07) : 1989 - 2000
  • [8] A Discontinuous Galerkin Method for the Subjective Surfaces Problem
    Leon Bungert
    Vadym Aizinger
    Michael Fried
    Journal of Mathematical Imaging and Vision, 2017, 58 : 147 - 161
  • [9] Discontinuous Galerkin Method for the Pedestrian Flow Problem
    Felcman, J.
    Dolejsi, V.
    Kubera, P.
    INTERNATIONAL CONFERENCE OF NUMERICAL ANALYSIS AND APPLIED MATHEMATICS (ICNAAM 2017), 2018, 1978
  • [10] A Discontinuous Galerkin Method for the Subjective Surfaces Problem
    Bungert, Leon
    Aizinger, Vadym
    Fried, Michael
    JOURNAL OF MATHEMATICAL IMAGING AND VISION, 2017, 58 (01) : 147 - 161