Investigating State Restriction in Fluorescent Protein FRET Using Time-Resolved Fluorescence and Anisotropy

被引:9
|
作者
Blacker, Thomas S. [1 ,2 ,3 ]
Chen, WeiYue [4 ]
Avezov, Edward [5 ]
Marsh, Richard J. [1 ,6 ]
Duchen, Michael R. [3 ]
Kaminski, Clemens F. [4 ]
Bain, Angus J. [1 ,2 ]
机构
[1] UCL, Dept Phys & Astron, Gower St, London WC1E 6BT, England
[2] UCL, Ctr Math & Phys Life Sci & Expt Biol, Gower St, London WC1E 6BT, England
[3] UCL, Dept Cell & Dev Biol, Gower St, London WC1E 6BT, England
[4] Univ Cambridge, Dept Chem Engn & Biotechnol, Pembroke St, Cambridge CB2 3RA, England
[5] Univ Cambridge, Cambridge Inst Med Res, Cambridge CB2 0XY, England
[6] Kings Coll London, Canc Cell Biol & Imaging, New Hunts House,Newcomen St, London SE1 1UL, England
来源
JOURNAL OF PHYSICAL CHEMISTRY C | 2017年 / 121卷 / 03期
基金
英国惠康基金; 英国工程与自然科学研究理事会; 英国生物技术与生命科学研究理事会;
关键词
RESONANCE ENERGY-TRANSFER; GLUTATHIONE-S-TRANSFERASE; LIVING CELLS; INTERNAL ROTATIONS; FORSTER DISTANCES; LIFETIME; ACCEPTOR; SYSTEM; DEPOLARIZATION; STOICHIOMETRY;
D O I
10.1021/acs.jpcc.6b11235
中图分类号
O64 [物理化学(理论化学)、化学物理学];
学科分类号
070304 ; 081704 ;
摘要
Most fluorescent proteins exhibit multiexponential fluorescence decays, indicating a heterogeneous excited state population. FRET between fluorescent proteins should therefore involve multiple energy transfer pathways. We recently demonstrated the FRET pathways between EGFP and mCherry (mC), upon the dimerization of 3-phosphoinositide dependent protein kinase 1 (PDK1); to be highly restricted. A mechanism for FRET restriction based on a highly unfavorable k(2) orientation factor arising from differences in donor-acceptor transition dipole moment angles in a far from coplanar and near static interaction geometry was proposed. Here this is tested via FRET to mC arising from the association of glutathione (GSH) and glutathione S-transferase (GST) with an intrinsically homogeneous and more mobile donor Oregon Green 488 (OG). A new analysis of the acceptor window intensity, based on the turnover point of the sensitized fluorescence, is combined with donor window intensity and anisotropy measurements which show that unrestricted FRET to mC takes place. However, a long-lived anisotropy decay component in the donor window reveals a GST-GSH population in which FRET does not occur, explaining previous discrepancies between quantitative FRET measurements of GST-GSH association and their accepted values. This reinforces the importance of the local donor acceptor environment in mediating energy transfer and the need to perform spectrally resolved intensity and anisotropy decay measurements in the accurate quantification of fluorescent protein FRET.
引用
收藏
页码:1507 / 1514
页数:8
相关论文
共 50 条
  • [31] Solution state hybridization detection using time-resolved fluorescence anisotropy of quantum dot-DNA bioconjugates
    Giraud, Gerard
    Schulze, Holger
    Bachmann, Till T.
    Campbell, Colin J.
    Mount, Andrew R.
    Ghazal, Peter
    Khondoker, Mizanur R.
    Ember, Stuart W. J.
    Ciani, Ilenia
    Tlili, Chaker
    Walton, Anthony J.
    Terry, Jonathan G.
    Crain, Jason
    CHEMICAL PHYSICS LETTERS, 2010, 484 (4-6) : 309 - 314
  • [32] Time-resolved fluorescence - An approach in protein analysis
    Villari, A
    Micali, N
    Fresta, M
    Trusso, S
    Puglisi, G
    RECENT ADVANCES IN TRYPTOPHAN RESEARCH: TRYPTOPHAN AND SEROTONIN PATHWAYS, 1996, 398 : 739 - 747
  • [33] Time-resolved fluorescence studies of nucleotide flipping by restriction enzymes
    Neely, Robert K.
    Tamulaitis, Gintautas
    Chen, Kai
    Kubala, Marta
    Siksnys, Virginijus
    Jones, Anita C.
    NUCLEIC ACIDS RESEARCH, 2009, 37 (20) : 6859 - 6870
  • [34] Time-resolved fluorescence anisotropy imaging applied to live cells
    Suhling, K
    Siegel, J
    Lanigan, PMP
    Lévêque-Fort, S
    Webb, SED
    Phillips, D
    Davis, DM
    French, PMW
    OPTICS LETTERS, 2004, 29 (06) : 584 - 586
  • [35] Time-resolved fluorescence anisotropy of styryl dye–cucurbituril complexes
    N. Kh. Petrov
    D. A. Ivanov
    I. V. Kryukov
    Yu. A. Shandarov
    A. D. Svirida
    M. V. Alfimov
    High Energy Chemistry, 2017, 51 : 72 - 74
  • [36] SIZE MEASUREMENTS OF FLUORESCENT CARBON NANOPARTICLES IN A COFLOWING LAMINAR DIFFUSION FLAME BY TIME-RESOLVED FLUORESCENCE ANISOTROPY
    Commodo, M.
    de Lisio, C.
    D'Anna, A.
    Minutolo, P.
    COMBUSTION SCIENCE AND TECHNOLOGY, 2012, 184 (7-8) : 916 - 928
  • [37] TIME-RESOLVED FLUORESCENCE ANISOTROPY MEASUREMENTS ON POLYVINYL AROMATIC POLYMERS)
    DRAKE, RC
    CHRISTENSEN, RL
    PHILLIPS, D
    POLYMER PHOTOCHEMISTRY, 1984, 5 (1-6): : 141 - 151
  • [38] Investigations of protein-protein interactions using time-resolved fluorescence and phasors
    Jameson, David M.
    Vetromile, Carissa M.
    James, Nicholas G.
    METHODS, 2013, 59 (03) : 278 - 286
  • [39] On-the-fly simulation of time-resolved fluorescence spectra and anisotropy
    Xu, Chao
    Lin, Congru
    Peng, Jiawei
    Zhang, Juanjuan
    Lin, Shichen
    Gu, Feng Long
    Gelin, Maxim F.
    Lan, Zhenggang
    JOURNAL OF CHEMICAL PHYSICS, 2024, 160 (10):
  • [40] TIME-RESOLVED FLUORESCENCE ANISOTROPY FOR SYSTEMS WITH LIFETIME AND DYNAMIC HETEROGENEITY
    LUDESCHER, RD
    PETING, L
    HUDSON, S
    HUDSON, B
    BIOPHYSICAL CHEMISTRY, 1987, 28 (01) : 59 - 75