A Cotraining-Based Semisupervised Approach for Remaining-Useful-Life Prediction of Bearings

被引:1
|
作者
Yan, Xuguo [1 ,2 ,3 ]
Xia, Xuhui [1 ,2 ,3 ]
Wang, Lei [1 ,2 ,3 ]
Zhang, Zelin [1 ,2 ,3 ]
机构
[1] Wuhan Univ Sci & Technol, Minist Educ, Key Lab Met Equipment & Control Technol, Wuhan 430081, Peoples R China
[2] Wuhan Univ Sci & Technol, Hubei Key Lab Mech Transmiss & Mfg Engn, Wuhan 430081, Peoples R China
[3] Wuhan Univ Sci & Technol, Precis Mfg Inst, Wuhan 430081, Peoples R China
基金
中国国家自然科学基金;
关键词
RUL prediction; cotraining; semisupervised learning; bearings; HEALTH MANAGEMENT; FAULT-DIAGNOSIS; NEURAL-NETWORK; PROGNOSTICS; MACHINERY; REPRESENTATION; ALGORITHMS; FREQUENCY; ENSEMBLE; SIGNALS;
D O I
10.3390/s22207766
中图分类号
O65 [分析化学];
学科分类号
070302 ; 081704 ;
摘要
The failure of bearings can have a significant negative impact on the safe operation of equipment. Recently, deep learning has become one of the focuses of RUL prediction due to its potent scalability and nonlinear fitting ability. The supervised learning process in deep learning requires a significant quantity of labeled data, but data labeling can be expensive and time-consuming. Cotraining is a semisupervised learning method that reduces the quantity of required labeled data through exploiting available unlabeled data in supervised learning to boost accuracy. This paper innovatively proposes a cotraining-based approach for RUL prediction. A CNN and an LSTM were cotrained on large amounts of unlabeled data to obtain a health indicator (HI), then the monitoring data were entered into the HI and the RUL prediction was realized. The effectiveness of the proposed approach was compared and analyzed against individual CNN and LSTM and the stacking networks SAE+LSTM and CNN+LSTM in the existing literature using RMSE and MAPE values on a PHM 2012 dataset. The results demonstrate that the RMSE and MAPE value of the proposed approach are superior to individual CNN and LSTM, and the RMSE value of the proposed approach is 54.72, which is significantly lower than SAE+LSTM (137.12), and close to CNN+LSTM (49.36). The proposed approach has also been tested successfully on a real-world task and thus has strong application value.
引用
收藏
页数:24
相关论文
共 50 条
  • [31] Remaining Useful Life Prediction of Rolling Bearings Based on Policy Gradient Informer Model
    Xiong, Jiahao
    Li, Feng
    Tang, Baoping
    Wang, Yongchao
    Luo, Ling
    Gongcheng Kexue Yu Jishu/Advanced Engineering Sciences, 2024, 56 (04): : 273 - 286
  • [32] Method for remaining useful life prediction of rolling bearings based on deep reinforcement learning
    Wang, Yipeng
    Li, Yonghua
    Lu, Hang
    Wang, Denglong
    REVIEW OF SCIENTIFIC INSTRUMENTS, 2024, 95 (09):
  • [33] Remaining useful life prediction of rolling bearings based on TET and DSRNet-AttBiLSTM
    Zhou, Yuguo
    Zhang, Jinchao
    Sun, Yiping
    Yu, Chunfeng
    Zhou, Lijian
    Zhendong yu Chongji/Journal of Vibration and Shock, 2024, 43 (19): : 163 - 173
  • [34] Remaining useful life prediction of rolling bearings based on convolutional recurrent attention network
    Zhang, Qiang
    Ye, Zijian
    Shao, Siyu
    Niu, Tianlin
    Zhao, Yuwei
    ASSEMBLY AUTOMATION, 2022, 42 (03) : 372 - 387
  • [35] A Feature Fusion-Based Method for Remaining Useful Life Prediction of Rolling Bearings
    Liu, Jie
    Yang, Zian
    Xie, Jingsong
    Wang, Ruijie
    Liu, Shanhui
    Xi, Darun
    IEEE TRANSACTIONS ON INSTRUMENTATION AND MEASUREMENT, 2023, 72
  • [36] Remaining useful life prediction of rolling element bearings based on health state assessment
    Liu, Zhiliang
    Zuo, Ming J.
    Qin, Yong
    PROCEEDINGS OF THE INSTITUTION OF MECHANICAL ENGINEERS PART C-JOURNAL OF MECHANICAL ENGINEERING SCIENCE, 2016, 230 (02) : 314 - 330
  • [37] Remaining useful life prediction for rolling bearings based on RVM-Hausdorff distance
    Xu, Peihua
    Tu, Zhaoyu
    Li, Menghui
    Wang, Jun
    Wang, Xian-Bo
    MEASUREMENT SCIENCE AND TECHNOLOGY, 2023, 34 (12)
  • [38] A recurrent neural network based health indicator for remaining useful life prediction of bearings
    Guo, Liang
    Li, Naipeng
    Jia, Feng
    Lei, Yaguo
    Lin, Jing
    NEUROCOMPUTING, 2017, 240 : 98 - 109
  • [39] Remaining Useful Life Prediction of Rolling Bearings Based on ECA-CAE and Autoformer
    Zhong, Jianhua
    Li, Huying
    Chen, Yuquan
    Huang, Cong
    Zhong, Shuncong
    Geng, Haibin
    Zhou, Yongquan
    BIOMIMETICS, 2024, 9 (01)
  • [40] Prediction on the Remaining Useful Life of Rolling Bearings Using Ensemble DLSTM
    Jiang, Miao
    Xiang, Yang
    SHOCK AND VIBRATION, 2023, 2023