Remaining useful life prediction of rolling element bearings based on health state assessment

被引:72
|
作者
Liu, Zhiliang [1 ,2 ,3 ]
Zuo, Ming J. [1 ,4 ]
Qin, Yong [2 ]
机构
[1] Univ Elect Sci & Technol China, Sch Mechatron Engn, Chengdu 611731, Peoples R China
[2] Beijing Jiaotong Univ, State Key Lab Rail Traff Control & Safety, Beijing, Peoples R China
[3] Hangzhou Bearing Test & Res Ctr, State Testing Lab, Hangzhou, Zhejiang, Peoples R China
[4] Univ Alberta, Dept Mech Engn, Edmonton, AB, Canada
基金
加拿大自然科学与工程研究理事会; 中国博士后科学基金; 中国国家自然科学基金;
关键词
Remaining useful life; health state assessment; support vector machine; rolling element bearing; accelerated degradation test; FEATURE-SELECTION; PROGNOSIS; DIAGNOSIS; KERNEL;
D O I
10.1177/0954406215590167
中图分类号
TH [机械、仪表工业];
学科分类号
0802 ;
摘要
Instead of looking for an overall regression model for remaining useful life (RUL) prediction, this paper proposes a RUL prediction framework based on multiple health state assessment that divides the entire bearing life into several health states where a local regression model can be built individually. A hybrid approach consisting of both unsupervised learning and supervised learning is proposed to automatically estimate the real-time health state of a bearing in cases with no prior knowledge available. Support vector machine is the main technology adopted to implement health state assessment and RUL prediction. Experimental results on accelerated degradation tests of rolling element bearings demonstrate the effectiveness of the proposed framework.
引用
收藏
页码:314 / 330
页数:17
相关论文
共 50 条
  • [1] Remaining Useful Life prediction of rolling bearings based on risk assessment and degradation state coefficient
    Li, Qiang
    Yan, Changfeng
    Chen, Guangyi
    Wang, Huibin
    Li, Hongkun
    Wu, Lixiao
    [J]. ISA TRANSACTIONS, 2022, 129 : 413 - 428
  • [2] A probabilistic approach to remaining useful life prediction of rolling element bearings
    Prakash, Guru
    Narasimhan, Sriram
    Pandey, Mahesh D.
    [J]. STRUCTURAL HEALTH MONITORING-AN INTERNATIONAL JOURNAL, 2019, 18 (02): : 466 - 485
  • [3] Prediction of remaining useful life of rolling element bearings based on LSTM and exponential model
    Liu, Jingna
    Hao, Rujiang
    Liu, Qiang
    Guo, Wenwu
    [J]. INTERNATIONAL JOURNAL OF MACHINE LEARNING AND CYBERNETICS, 2023, 14 (04) : 1567 - 1578
  • [4] Prediction of remaining useful life of rolling element bearings based on LSTM and exponential model
    Jingna Liu
    Rujiang Hao
    Qiang Liu
    Wenwu Guo
    [J]. International Journal of Machine Learning and Cybernetics, 2023, 14 : 1567 - 1578
  • [5] Remaining Useful Life Prediction of Rolling Element Bearings Based on Unscented Kalman Filter
    Qi, Junyu
    Mauricio, Alexadre
    Sarrazin, Mathieu
    Janssens, Karl
    Gryllias, Konstantinos
    [J]. ADVANCES IN CONDITION MONITORING OF MACHINERY IN NON-STATIONARY OPERATIONS (CMMNO 2018), 2019, 15 : 111 - 121
  • [6] Health index construction and remaining useful life prediction of rolling bearings
    Wang Yujing
    Wang Shida
    Kang Shouqiang
    Xie Jinbao
    [J]. PROCEEDINGS OF 2019 14TH IEEE INTERNATIONAL CONFERENCE ON ELECTRONIC MEASUREMENT & INSTRUMENTS (ICEMI), 2019, : 1241 - 1247
  • [7] Predicting the Remaining Useful Life of Rolling Element Bearings
    Jantunen, Erkki
    Hooghoudt, Jan-Otto
    Yang, Yi
    McKay, Mark
    [J]. 2018 IEEE INTERNATIONAL CONFERENCE ON INDUSTRIAL TECHNOLOGY (ICIT), 2018, : 2035 - 2040
  • [8] Degradation Feature Selection for Remaining Useful Life Prediction of Rolling Element Bearings
    Zhang, Bin
    Zhang, Lijun
    Xu, Jinwu
    [J]. QUALITY AND RELIABILITY ENGINEERING INTERNATIONAL, 2016, 32 (02) : 547 - 554
  • [9] Remaining Useful Life Prediction of Rolling Element Bearings Based on Hybrid Drive of Data and Model
    Wang, Xin
    Cui, Lingli
    Wang, Huaqing
    [J]. IEEE SENSORS JOURNAL, 2022, 22 (17) : 16985 - 16993
  • [10] A Nonlinear Degradation Model Based Method for Remaining Useful Life Prediction of Rolling Element Bearings
    Lei, Yaguo
    Li, Naipeng
    Jia, Feng
    Lin, Jing
    Xing, Saibo
    [J]. 2015 PROGNOSTICS AND SYSTEM HEALTH MANAGEMENT CONFERENCE (PHM), 2015,