Change Point Detection in The Skew-Normal Model Parameters

被引:17
|
作者
Arellano-Valle, Reinaldo B. [1 ]
Castro, Luis M. [2 ]
Loschi, Rosangela H. [3 ]
机构
[1] Pontificia Univ Catolica Chile, Dept Estat, Santiago, Chile
[2] Univ Concepcion, Dept Estat, Concepcion, Chile
[3] Univ Fed Minas Gerais, Dept Estat, BR-31270901 Belo Horizonte, MG, Brazil
关键词
Change point detection; Posterior distribution; Shape parameter; Skew-normal distribution; Stochastic representation; Primary; 62Exx; Secondary; 62F15; SHAPE MIXTURES; DISTRIBUTIONS; INFERENCE;
D O I
10.1080/03610926.2011.611321
中图分类号
O21 [概率论与数理统计]; C8 [统计学];
学科分类号
020208 ; 070103 ; 0714 ;
摘要
Bayesian inference under the skew-normal family of distributions is discussed using an arbitrary proper prior for the skewness parameter. In particular, we review some results when a skew-normal prior distribution is considered. Considering this particular prior, we provide a stochastic representation of the posterior of the skewness parameter. Moreover, we obtain analytical expressions for the posterior mean and variance of the skewness parameter. The ultimate goal is to consider these results to one change point identification in the parameters of the location-scale skew-normal model. Some Latin American emerging market datasets are used to illustrate the methodology developed in this work.
引用
收藏
页码:603 / 618
页数:16
相关论文
共 50 条
  • [41] A Hierarchical Model for the Skew-normal Distribution with Application in Developmental Neurotoxicology
    Razzaghi, Mehdi
    [J]. COMMUNICATIONS IN STATISTICS-THEORY AND METHODS, 2014, 43 (08) : 1859 - 1872
  • [42] Estimating the closed skew-normal distribution parameters using weighted moments
    Flecher, C.
    Naveau, P.
    Allard, D.
    [J]. STATISTICS & PROBABILITY LETTERS, 2009, 79 (19) : 1977 - 1984
  • [43] The inverse Gaussian process with a skew-normal distribution as a degradation model
    Chen, Xudan
    Sun, Xinli
    Ding, Xiong
    Tang, Jue
    [J]. COMMUNICATIONS IN STATISTICS-SIMULATION AND COMPUTATION, 2020, 49 (11) : 2827 - 2843
  • [44] Differentially private density estimation with skew-normal mixtures model
    Wu, Weisan
    [J]. SCIENTIFIC REPORTS, 2021, 11 (01)
  • [45] A Skew-Normal Spatial Simultaneous Autoregressive Model and its Implementation
    Sanjeeva Kumar Jha
    Ningthoukhongjam Vikimchandra Singh
    [J]. Sankhya A, 2023, 85 : 306 - 323
  • [46] Performance of ridge estimator in skew-normal mode regression model
    Cao, Xinyun
    Wang, Danlu
    Wu, Liucang
    [J]. COMMUNICATIONS IN STATISTICS-SIMULATION AND COMPUTATION, 2023, 52 (03) : 1164 - 1177
  • [47] DEA Model of Random Fuzzy with Data of Skew-Normal Distribution
    Mehrasa, B.
    Behzadi, M. H.
    [J]. INTERNATIONAL JOURNAL OF APPLIED MATHEMATICS & STATISTICS, 2018, 57 (01): : 56 - 64
  • [48] Skew-normal partial functional linear model and homogeneity test
    Hu, Yuping
    Xue, Liugen
    Zhao, Jing
    Zhang, Liying
    [J]. JOURNAL OF STATISTICAL PLANNING AND INFERENCE, 2020, 204 : 116 - 127
  • [49] Skew-normal semiparametric varying coefficient model and score test
    Xu, Dengke
    Zhang, Zhongzhan
    Du, Jiang
    [J]. JOURNAL OF STATISTICAL COMPUTATION AND SIMULATION, 2015, 85 (02) : 216 - 234
  • [50] A new class of skew-normal distributions
    Arellano-Valle, RB
    Gómez, HW
    Quintana, FA
    [J]. COMMUNICATIONS IN STATISTICS-THEORY AND METHODS, 2004, 33 (07) : 1465 - 1480