Change Point Detection in The Skew-Normal Model Parameters

被引:17
|
作者
Arellano-Valle, Reinaldo B. [1 ]
Castro, Luis M. [2 ]
Loschi, Rosangela H. [3 ]
机构
[1] Pontificia Univ Catolica Chile, Dept Estat, Santiago, Chile
[2] Univ Concepcion, Dept Estat, Concepcion, Chile
[3] Univ Fed Minas Gerais, Dept Estat, BR-31270901 Belo Horizonte, MG, Brazil
关键词
Change point detection; Posterior distribution; Shape parameter; Skew-normal distribution; Stochastic representation; Primary; 62Exx; Secondary; 62F15; SHAPE MIXTURES; DISTRIBUTIONS; INFERENCE;
D O I
10.1080/03610926.2011.611321
中图分类号
O21 [概率论与数理统计]; C8 [统计学];
学科分类号
020208 ; 070103 ; 0714 ;
摘要
Bayesian inference under the skew-normal family of distributions is discussed using an arbitrary proper prior for the skewness parameter. In particular, we review some results when a skew-normal prior distribution is considered. Considering this particular prior, we provide a stochastic representation of the posterior of the skewness parameter. Moreover, we obtain analytical expressions for the posterior mean and variance of the skewness parameter. The ultimate goal is to consider these results to one change point identification in the parameters of the location-scale skew-normal model. Some Latin American emerging market datasets are used to illustrate the methodology developed in this work.
引用
收藏
页码:603 / 618
页数:16
相关论文
共 50 条
  • [21] Shrinkage estimation of location parameters in a multivariate skew-normal distribution
    Kubokawa, Tatsuya
    Strawderman, William E.
    Yuasa, Ryota
    [J]. COMMUNICATIONS IN STATISTICS-THEORY AND METHODS, 2020, 49 (08) : 2008 - 2024
  • [22] Characterization of the skew-normal distribution
    Arjun K. Gupta
    Truc T. Nguyen
    Jose Almer T. Sanqui
    [J]. Annals of the Institute of Statistical Mathematics, 2004, 56 : 351 - 360
  • [23] A new spatial skew-normal random field model
    Allard, Denis
    Naveau, Philippe
    [J]. COMMUNICATIONS IN STATISTICS-THEORY AND METHODS, 2007, 36 (9-12) : 1821 - 1834
  • [24] THE SKEW-NORMAL DISTRIBUTION IN SPC
    Figueiredo, Fernanda
    Ivette Gomes, M.
    [J]. REVSTAT-STATISTICAL JOURNAL, 2013, 11 (01) : 83 - 104
  • [25] Extensions of the skew-normal ogive item response model
    Bazan, Jorge Luis
    Branco, Marcia D.
    Bolfarine, Heleno
    [J]. BRAZILIAN JOURNAL OF PROBABILITY AND STATISTICS, 2014, 28 (01) : 1 - 23
  • [26] A skew-normal dynamic linear model and Bayesian forecasting
    Arellano-Valle, Reinaldo B.
    Contreras-Reyes, Javier E.
    Lopez Quintero, Freddy O.
    Valdebenito, Abel
    [J]. COMPUTATIONAL STATISTICS, 2019, 34 (03) : 1055 - 1085
  • [27] A skew-normal dynamic linear model and Bayesian forecasting
    Reinaldo B. Arellano-Valle
    Javier E. Contreras-Reyes
    Freddy O. López Quintero
    Abel Valdebenito
    [J]. Computational Statistics, 2019, 34 : 1055 - 1085
  • [28] Skew-normal generalized spatial panel data model
    Farzammehr, Mohadeseh Alsadat
    Zadkarami, Mohammad Reza
    McLachlan, Geoffrey J.
    [J]. COMMUNICATIONS IN STATISTICS-SIMULATION AND COMPUTATION, 2021, 50 (11) : 3286 - 3314
  • [29] A New Skew-normal Model for the Application-Oriented Skew-t Model
    Chen, John T.
    [J]. EUROPEAN JOURNAL OF PURE AND APPLIED MATHEMATICS, 2010, 3 (03): : 531 - 540
  • [30] The Kumaraswamy skew-normal distribution
    Mameli, Valentina
    [J]. STATISTICS & PROBABILITY LETTERS, 2015, 104 : 75 - 81