Atmospheric-pressure plasma-enhanced chemical vapor deposition of microporous silica membranes for gas separation

被引:36
|
作者
Nagasawa, Hiroki [1 ]
Yamamoto, Yuta [1 ]
Tsuda, Nobukazu [1 ]
Kanezashi, Masakoto [1 ]
Yoshioka, Tomohisa [1 ]
Tsuru, Toshinori [1 ]
机构
[1] Hiroshima Univ, Dept Chem Engn, Higashihiroshima, Hiroshima 7398527, Japan
基金
日本学术振兴会; 日本科学技术振兴机构;
关键词
Atmospheric-pressure plasma; Plasma-enhanced chemical vapor deposition; Microporous silica membrane; Gas separation; DIELECTRIC BARRIER DISCHARGE; ORGANOSILICA MEMBRANES; HIGH-TEMPERATURE; THIN-FILMS; PECVD; PRECURSORS; COATINGS; PERMEATION; HMDSO; SPECTROSCOPY;
D O I
10.1016/j.memsci.2016.11.067
中图分类号
TQ [化学工业];
学科分类号
0817 ;
摘要
Microporous silica membranes with high permselectivity are fabricated by atmospheric-pressure plasma enhanced chemical vapor deposition (AP-PECVD) using hexamethyldisiloxane as the precursor in plasma working gases of pure argon, and mixture of argon with oxygen or nitrogen. A silica membrane grown using plasma composed of a mixture of argon and nitrogen displays highly efficient gas separation, with selectivities for He/N-2 and He/SF6 of 196 and 820, respectively, and He permeance of 1.1x10(-7) mol m(-2) S-1 Pa-1 at 50 degrees C. Characterization of the membranes by FTIR and X-ray photoelectron spectroscopies reveals a relatively high concentration of carbon remains in the membrane grown using a mixture of argon and nitrogen. Annealing at elevated temperature after plasma deposition improves the permselectivity of the membranes. After annealing at 300 degrees C, the permeance of He at 50 degrees C increased to 4.0x10(-7) mol m(-2) s(-1) Pa-1 with no marked decrease of selectivity (He/N-2 =98, He/SF6 =770). The annealed membrane also exhibits remarkable permselectivity for CO2, showing selectivities for CO2/N-2 and CO2/CH4 of 46 and 166, respectively, with CO2 permeance of 1.9 x10(-7) mol m(-2) s(-1) Pa-1 at 50 degrees C. AP-PECVD shows great promise to fabricate microporous silica membranes highly permselective for gas separation.
引用
收藏
页码:644 / 651
页数:8
相关论文
共 50 条
  • [1] Atmospheric-Pressure Plasma-Enhanced Chemical Vapor Deposition of Hybrid Silica Membranes
    Nagasawa, Hiroki
    Yamamoto, Yuta
    Kanezashi, Masakoto
    Tsuru, Toshinori
    [J]. JOURNAL OF CHEMICAL ENGINEERING OF JAPAN, 2018, 51 (09) : 732 - 739
  • [2] Achieving uniform layer deposition by atmospheric-pressure plasma-enhanced chemical vapor deposition
    Lee, Jae-Ok
    Kang, Woo Seok
    Hur, Min
    Lee, Jin Young
    Song, Young-Hoon
    [J]. THIN SOLID FILMS, 2015, 597 : 7 - 13
  • [3] Gas-phase kinetics in atmospheric-pressure plasma-enhanced chemical vapor deposition of silicon films
    Kakiuchi, Hiroaki
    Ohmi, Hiromasa
    Yasutake, Kiyoshi
    [J]. JOURNAL OF APPLIED PHYSICS, 2021, 130 (05)
  • [4] Atmospheric-pressure plasma-enhanced chemical vapor deposition of nanocomposite thin films from ethyl lactate and silica nanoparticles
    Milaniak, Natalia
    Laroche, Gaetan
    Massines, Francoise
    [J]. PLASMA PROCESSES AND POLYMERS, 2021, 18 (02)
  • [5] Synthesis of carbon nanotubes by plasma-enhanced chemical vapor deposition in an atmospheric-pressure microwave torch
    Zajickova, Lenka
    Jasek, Ondrej
    Elias, Marek
    Synek, Petr
    Lazar, Lukas
    Schneeweiss, Oldrich
    Hanzlikova, Renata
    [J]. PURE AND APPLIED CHEMISTRY, 2010, 82 (06) : 1259 - 1272
  • [6] Facile low-temperature route toward the development of polymer-supported silica-based membranes for gas separation via atmospheric-pressure plasma-enhanced chemical vapor deposition
    Nagasawa, Hiroki
    Yasunari, Ryuki
    Kawasaki, Mitsugu
    Kanezashi, Masakoto
    Tsuru, Toshinori
    [J]. JOURNAL OF MEMBRANE SCIENCE, 2021, 638
  • [7] Atmospheric-pressure plasma-enhanced chemical vapor deposition of electrochromic organonickel oxide thin films with an atmospheric pressure plasma jet
    Lin, Yung-Sen
    Lin, Di-Jiun
    Sung, Ping-Ju
    Tien, Shih-Wei
    [J]. THIN SOLID FILMS, 2013, 532 : 36 - 43
  • [8] Weatherability of Amorphous Carbon Films Synthesized by Atmospheric-Pressure Plasma-Enhanced Chemical Vapor Deposition
    Inaba, Reiko
    Kishimoto, Eiichi
    Shirakura, Akira
    Suzuki, Tetsuya
    [J]. SENSORS AND MATERIALS, 2017, 29 (06) : 835 - 841
  • [9] Effect of pretreatment on the deposition of carbon nanotubes by using atmospheric-pressure plasma-enhanced chemical-vapor deposition
    Kyung, SJ
    Lee, YH
    Kim, CW
    Lee, JH
    Yeom, GY
    [J]. JOURNAL OF THE KOREAN PHYSICAL SOCIETY, 2005, 47 (03) : 463 - 468
  • [10] Plasma-enhanced chemical vapor deposition of amorphous carbon molecular sieve membranes for gas separation
    Nagasawa, Hiroki
    Kanezashi, Masakoto
    Yoshioka, Tomohisa
    Tsuru, Toshinori
    [J]. RSC ADVANCES, 2016, 6 (64) : 59045 - 59049