Facile low-temperature route toward the development of polymer-supported silica-based membranes for gas separation via atmospheric-pressure plasma-enhanced chemical vapor deposition

被引:8
|
作者
Nagasawa, Hiroki [1 ]
Yasunari, Ryuki [2 ]
Kawasaki, Mitsugu [1 ]
Kanezashi, Masakoto [1 ]
Tsuru, Toshinori [1 ]
机构
[1] Hiroshima Univ, Grad Sch Adv Sci & Engn, Chem Engn Program, 1-4-1 Kagamiyama, Higashihiroshima, Hiroshima 7398527, Japan
[2] Hiroshima Univ, Sch Engn, Dept Chem Engn, 1-4-1 Kagamiyama, Higashihiroshima, Hiroshima 7398527, Japan
关键词
Atmospheric-pressure plasma; Silica membrane; Polymeric support; Layered hybrid; Multilayer composite membrane; LAYERED-HYBRID MEMBRANE; PERMEATION PROPERTIES; FABRICATION; MODEL;
D O I
10.1016/j.memsci.2021.119709
中图分类号
TQ [化学工业];
学科分类号
0817 ;
摘要
The use of inexpensive porous polymers instead of conventional ceramics to support silica-based membranes can potentially minimize the cost of membrane synthesis. To develop polymer-supported silica-based membranes, lowering the high synthesis temperature of the silica-based top layer is essential. In this study, we explore the application of atmospheric-pressure plasma-enhanced chemical vapor deposition (AP-PECVD) for synthesizing polymer-supported silica-based membranes. The deposition of a continuous silica-based layer on an asymmetric polysulfone ultrafiltration membrane using hexamethyldisiloxane as an organosilicon precursor was achieved at ambient temperature and pressure via AP-PECVD. The gas permeation properties of the AP-PECVD-derived polymer-supported membranes strongly depended on the deposition duration, as prolonged deposition could reduce the remaining defects by covering the entire surface of the support with the plasma-deposited layer. The membranes showed increased selectivities for H2/N2 and H2/SF6 from 2.9 to 9.5, and from 4.5 to 184, respectively, exhibiting gas permeation dominated by molecular sieving. The present study demonstrates that APPECVD is a promising strategy for the fabrication of polymer-supported silica-based membranes for gas separation.
引用
收藏
页数:10
相关论文
共 21 条
  • [1] Atmospheric-pressure plasma-enhanced chemical vapor deposition of microporous silica membranes for gas separation
    Nagasawa, Hiroki
    Yamamoto, Yuta
    Tsuda, Nobukazu
    Kanezashi, Masakoto
    Yoshioka, Tomohisa
    Tsuru, Toshinori
    [J]. JOURNAL OF MEMBRANE SCIENCE, 2017, 524 : 644 - 651
  • [2] Atmospheric-Pressure Plasma-Enhanced Chemical Vapor Deposition of Hybrid Silica Membranes
    Nagasawa, Hiroki
    Yamamoto, Yuta
    Kanezashi, Masakoto
    Tsuru, Toshinori
    [J]. JOURNAL OF CHEMICAL ENGINEERING OF JAPAN, 2018, 51 (09) : 732 - 739
  • [3] Characteristics of carbon nanotubes deposited by using low-temperature atmospheric-pressure plasma-enhanced chemical vapor deposition
    Kim, C
    Lee, Y
    Kyung, S
    Yeom, G
    [J]. JOURNAL OF THE KOREAN PHYSICAL SOCIETY, 2005, 46 (04) : 918 - 921
  • [4] Low-Temperature Epitaxial Growth by Quiescent Plasma-Enhanced Chemical Vapor Deposition at Atmospheric Pressure
    Song, Chang-Hun
    Ryu, Hwa-Yeon
    Oh, Hoonjung
    Baik, Seung Jae
    Ko, Dae-Hong
    [J]. ECS JOURNAL OF SOLID STATE SCIENCE AND TECHNOLOGY, 2022, 11 (12)
  • [5] Low-Temperature Atmospheric-Pressure Plasma-Enhanced Chemical Deposition of Silicon Dioxide Films from Tetraethoxysilane
    Bil', A. S.
    Aleksandrov, S. E.
    [J]. RUSSIAN JOURNAL OF APPLIED CHEMISTRY, 2022, 95 (04) : 544 - 550
  • [6] Low-Temperature Atmospheric-Pressure Plasma-Enhanced Chemical Deposition of Silicon Dioxide Films from Tetraethoxysilane
    A. S. Bil’
    S. E. Aleksandrov
    [J]. Russian Journal of Applied Chemistry, 2022, 95 : 544 - 550
  • [7] Plasma-enhanced chemical vapor deposition of zinc oxide at atmospheric pressure and low temperature
    Barankin, M. D.
    Gonzalez, E., II
    Ladwig, A. M.
    Hicks, R. F.
    [J]. SOLAR ENERGY MATERIALS AND SOLAR CELLS, 2007, 91 (10) : 924 - 930
  • [8] Gas-phase kinetics in atmospheric-pressure plasma-enhanced chemical vapor deposition of silicon films
    Kakiuchi, Hiroaki
    Ohmi, Hiromasa
    Yasutake, Kiyoshi
    [J]. JOURNAL OF APPLIED PHYSICS, 2021, 130 (05)
  • [9] PRODUCTION OF FULLERENES BY LOW-TEMPERATURE PLASMA CHEMICAL-VAPOR-DEPOSITION UNDER ATMOSPHERIC-PRESSURE
    INOMATA, K
    AOKI, N
    KOINUMA, H
    [J]. JAPANESE JOURNAL OF APPLIED PHYSICS PART 2-LETTERS, 1994, 33 (2A): : L197 - L199
  • [10] Properties of fluorinated silica glass deposited at low temperature by atmospheric plasma-enhanced chemical vapor deposition
    Barankin, Michael D.
    Williams, Thomas S.
    Gonzalez, Eleazar, II
    Hicks, Robert F.
    [J]. THIN SOLID FILMS, 2010, 519 (04) : 1307 - 1313