Atmospheric-pressure plasma-enhanced chemical vapor deposition of microporous silica membranes for gas separation

被引:36
|
作者
Nagasawa, Hiroki [1 ]
Yamamoto, Yuta [1 ]
Tsuda, Nobukazu [1 ]
Kanezashi, Masakoto [1 ]
Yoshioka, Tomohisa [1 ]
Tsuru, Toshinori [1 ]
机构
[1] Hiroshima Univ, Dept Chem Engn, Higashihiroshima, Hiroshima 7398527, Japan
基金
日本学术振兴会; 日本科学技术振兴机构;
关键词
Atmospheric-pressure plasma; Plasma-enhanced chemical vapor deposition; Microporous silica membrane; Gas separation; DIELECTRIC BARRIER DISCHARGE; ORGANOSILICA MEMBRANES; HIGH-TEMPERATURE; THIN-FILMS; PECVD; PRECURSORS; COATINGS; PERMEATION; HMDSO; SPECTROSCOPY;
D O I
10.1016/j.memsci.2016.11.067
中图分类号
TQ [化学工业];
学科分类号
0817 ;
摘要
Microporous silica membranes with high permselectivity are fabricated by atmospheric-pressure plasma enhanced chemical vapor deposition (AP-PECVD) using hexamethyldisiloxane as the precursor in plasma working gases of pure argon, and mixture of argon with oxygen or nitrogen. A silica membrane grown using plasma composed of a mixture of argon and nitrogen displays highly efficient gas separation, with selectivities for He/N-2 and He/SF6 of 196 and 820, respectively, and He permeance of 1.1x10(-7) mol m(-2) S-1 Pa-1 at 50 degrees C. Characterization of the membranes by FTIR and X-ray photoelectron spectroscopies reveals a relatively high concentration of carbon remains in the membrane grown using a mixture of argon and nitrogen. Annealing at elevated temperature after plasma deposition improves the permselectivity of the membranes. After annealing at 300 degrees C, the permeance of He at 50 degrees C increased to 4.0x10(-7) mol m(-2) s(-1) Pa-1 with no marked decrease of selectivity (He/N-2 =98, He/SF6 =770). The annealed membrane also exhibits remarkable permselectivity for CO2, showing selectivities for CO2/N-2 and CO2/CH4 of 46 and 166, respectively, with CO2 permeance of 1.9 x10(-7) mol m(-2) s(-1) Pa-1 at 50 degrees C. AP-PECVD shows great promise to fabricate microporous silica membranes highly permselective for gas separation.
引用
收藏
页码:644 / 651
页数:8
相关论文
共 50 条
  • [31] Low-Temperature Atmospheric-Pressure Plasma-Enhanced Chemical Deposition of Silicon Dioxide Films from Tetraethoxysilane
    A. S. Bil’
    S. E. Aleksandrov
    [J]. Russian Journal of Applied Chemistry, 2022, 95 : 544 - 550
  • [32] Effect of gas pressure on the synthesis of carbon nitride films during plasma-enhanced chemical vapor deposition
    Yu, W
    Ren, GB
    Wang, SF
    Han, L
    Li, XW
    Zhang, LS
    Fu, GS
    [J]. THIN SOLID FILMS, 2002, 402 (1-2) : 55 - 59
  • [33] Gas collisions and pressure quenching of the photoluminescence of silicon nanopowder grown by plasma-enhanced chemical vapor deposition
    Roura, P
    Costa, J
    Morante, JR
    Bertran, E
    [J]. JOURNAL OF APPLIED PHYSICS, 1997, 81 (07) : 3290 - 3293
  • [34] Deposition mechanisms in plasma-enhanced chemical vapor deposition of titanium
    Itoh, T
    Chang, M
    Ellwanger, R
    [J]. ELECTROCHEMICAL AND SOLID STATE LETTERS, 1999, 2 (10) : 531 - 533
  • [35] Plasma-enhanced chemical vapor deposition carbon nanotubes for ethanol gas sensors
    Hu, Chia-Te
    Liu, Chun-Kuo
    Huang, Meng-Wen
    Syue, Sen-Hong
    Wu, Jyh-Ming
    Chang, Yee-shyi
    Yeh, Jien-W.
    Shih, Han-C.
    [J]. DIAMOND AND RELATED MATERIALS, 2009, 18 (2-3) : 472 - 477
  • [36] The growth characteristics of microcrystalline Si thin film deposited by atmospheric pressure plasma-enhanced chemical vapor deposition
    Jung-Dae Kwon
    [J]. Electronic Materials Letters, 2013, 9 : 875 - 878
  • [37] The growth characteristics of microcrystalline Si thin film deposited by atmospheric pressure plasma-enhanced chemical vapor deposition
    Kwon, Jung-Dae
    [J]. ELECTRONIC MATERIALS LETTERS, 2013, 9 (06) : 875 - 878
  • [38] Remote plasma-enhanced chemical vapour deposition of silicon nitride at atmospheric pressure
    Nowling, GR
    Babayan, SE
    Jankovic, V
    Hicks, RF
    [J]. PLASMA SOURCES SCIENCE & TECHNOLOGY, 2002, 11 (01): : 97 - 103
  • [39] TiO2 Coatings Via Atmospheric-Pressure Plasma-Enhanced Chemical Vapor Deposition for Enhancing the UV-Resistant Properties of Transparent Plastics
    Xu, Jing
    Nagasawa, Hiroki
    Kanezashi, Masakoto
    Tsuru, Toshinori
    [J]. ACS OMEGA, 2021, 6 (02): : 1370 - 1377
  • [40] Atmospheric-pressure plasma enhanced chemical deposition: role of the reactor flow dynamics
    Descamps, Pierre
    Asad, Syed Salman
    De Wilde, Juray
    [J]. JOURNAL OF PHYSICS D-APPLIED PHYSICS, 2013, 46 (36)