Stability or instability of solitary waves to double dispersion equation with quadratic-cubic nonlinearity

被引:3
|
作者
Kolkovska, N. [1 ]
Dimova, M. [1 ]
Kutev, N. [1 ]
机构
[1] BAS, Inst Math & Informat, Acad G Bonchev Str,Blvd 8, Sofia 1113, Bulgaria
关键词
Stability; Solitary waves; Double dispersion equation; GENERALIZED BOUSSINESQ EQUATION; GLOBAL EXISTENCE; BLOW-UP; BIOMEMBRANES;
D O I
10.1016/j.matcom.2016.03.010
中图分类号
TP39 [计算机的应用];
学科分类号
081203 ; 0835 ;
摘要
The solitary waves to the double dispersion equation with quadratic-cubic nonlinearity are explicitly constructed. Grillakis, Shatah and Strauss' stability theory is applied for the investigation of the orbital stability or instability of solitary waves to the double dispersion equation. An analytical formula, related to some conservation laws of the problem, is derived. As a consequence, the dependence of orbital stability or instability on the parameters of the problem is demonstrated. A complete characterization of the values of the wave velocity, for which the solitary waves to the generalized Boussinesq equation are orbitally stable or unstable, is given. In the special case of a quadratic nonlinearity our results are reduced to those known in the literature. (C) 2016 International Association for Mathematics and Computers in Simulation (IMACS). Published by Elsevier B.V. All rights reserved.
引用
收藏
页码:249 / 264
页数:16
相关论文
共 50 条
  • [31] Orbital instability of standing waves for the quadratic-cubic Klein-Gordon-Schrodinger system
    Natali, Fabio
    Pastor, Ademir
    ZEITSCHRIFT FUR ANGEWANDTE MATHEMATIK UND PHYSIK, 2015, 66 (04): : 1341 - 1354
  • [32] Fuzzy stability of quadratic-cubic functional equations
    Zhi Hua Wang
    Wan Xiong Zhang
    Acta Mathematica Sinica, English Series, 2011, 27 : 2191 - 2204
  • [33] Fuzzy Stability of Quadratic-cubic Functional Equations
    Wang, Zhi Hua
    Zhang, Wan Xiong
    ACTA MATHEMATICA SINICA-ENGLISH SERIES, 2011, 27 (11) : 2191 - 2204
  • [34] OPTICAL SOLITON PERTURBATION AND POLARIZATION WITH QUADRATIC-CUBIC NONLINEARITY BY SINE-GORDON EQUATION APPROACH
    Yildirim, Y.
    Topkara, E.
    Biswas, A.
    Triki, H.
    Ekici, M.
    Guggilla, P.
    Khan, S.
    Belic, M. R.
    JOURNAL OF PHYSICAL STUDIES, 2021, 25 (02):
  • [35] Solitons in magneto-optic waveguides with quadratic-cubic nonlinearity
    Zayed, Elsayed M. E.
    Shohib, Reham M. A.
    El-Horbaty, Mahmoud M.
    Biswas, Anjan
    Asma, Mir
    Ekici, Mehmet
    Alzahrani, Abdullah Kamis
    Belic, Milivoj R.
    PHYSICS LETTERS A, 2020, 384 (25)
  • [36] Two-dimensional solitary-waves in media with quadratic and cubic nonlinearity
    Bang, O
    Kivshar, YS
    Buryak, AV
    De Rossi, A
    Trillo, S
    PHYSICAL REVIEW E, 1998, 58 (04) : 5057 - 5069
  • [37] Optical soliton solutions of the nonlinear complex Ginzburg-Landau equation with the generalized quadratic-cubic law nonlinearity having the chromatic dispersion
    Esen, Handenur
    Secer, Aydin
    Ozisik, Muslum
    Bayram, Mustafa
    PHYSICA SCRIPTA, 2024, 99 (09)
  • [38] Optical soliton perturbation with quadratic-cubic nonlinearity by mapping methods
    Krishnan, E., V
    Biswas, Anjan
    Zhou, Qin
    Ekici, Mehmet
    Alshomrani, Ali Saleh
    Belic, Milivoj
    CHINESE JOURNAL OF PHYSICS, 2019, 60 : 632 - 637
  • [39] Optical solitons with quadratic-cubic nonlinearity and fractional temporal evolution
    Tariq, Kalim U.
    Younis, Muhammad
    Rezazadeh, Hadi
    Rizvi, S. T. R.
    Osman, M. S.
    MODERN PHYSICS LETTERS B, 2018, 32 (26):
  • [40] Orbital Stability of Solitary Waves to Double Dispersion Equations with Combined Power-Type Nonlinearity
    Kolkovska, Natalia
    Dimova, Milena
    Kutev, Nikolai
    MATHEMATICS, 2021, 9 (12)