Optical soliton perturbation with quadratic-cubic nonlinearity by mapping methods

被引:13
|
作者
Krishnan, E., V [1 ]
Biswas, Anjan [2 ,3 ,4 ]
Zhou, Qin [5 ]
Ekici, Mehmet [6 ]
Alshomrani, Ali Saleh [3 ]
Belic, Milivoj [7 ]
机构
[1] Sultan Qaboos Univ, Dept Math & Stat, Al Khod 123,POB 36, Muscat, Oman
[2] Alabama A&M Univ, Dept Phys Chem & Math, Normal, AL 35762 USA
[3] King Abdulaziz Univ, Dept Math, Jeddah 21589, Saudi Arabia
[4] Tshwane Univ Technol, Dept Math & Stat, ZA-0008 Pretoria, South Africa
[5] Wuhan Donghu Univ, Sch Elect & Informat Engn, Wuhan 430212, Hubei, Peoples R China
[6] Yozgat Bozok Univ, Fac Sci & Arts, Dept Math, TR-66100 Yozgat, Turkey
[7] Texas A&M Univ Qatar, Sci Program, POB 23874, Doha, Qatar
基金
中国国家自然科学基金;
关键词
Solitons; Mapping methods; Quadratic-cubic nonlinearity; VECTOR MULTIPOLE; VORTEX SOLITONS; EQUATION;
D O I
10.1016/j.cjph.2019.06.002
中图分类号
O4 [物理学];
学科分类号
0702 ;
摘要
This paper reveals optical soliton solutions for the perturbed nonlinear Schrodinger's equation that is studied with quadratic-cubic nonlinearity. The mapping methods are utilized to retrieve these solitons which are of bright, dark and singular type.
引用
收藏
页码:632 / 637
页数:6
相关论文
共 50 条
  • [1] Optical soliton perturbation with quadratic-cubic nonlinearity by the method of undetermined coefficients
    Asma, Mir
    Othman, W. A. M.
    Wong, B. R.
    Biswas, Anjan
    [J]. JOURNAL OF OPTOELECTRONICS AND ADVANCED MATERIALS, 2017, 19 (11-12): : 699 - 703
  • [2] Optical soliton perturbation with quadratic-cubic nonlinearity by traveling wave hypothesis
    Asma, Mir
    Othman, W. A. M.
    Wong, B. R.
    Biswas, Anjan
    [J]. OPTOELECTRONICS AND ADVANCED MATERIALS-RAPID COMMUNICATIONS, 2017, 11 (9-10): : 517 - 519
  • [3] Optical soliton perturbation with quadratic-cubic nonlinearity by Adomian decomposition method
    Asma, Mir
    Othman, W. A. M.
    Wong, B. R.
    Biswas, Anjan
    [J]. OPTIK, 2018, 164 : 632 - 641
  • [4] Optical soliton perturbation with quadratic-cubic nonlinearity by traveling wave hypothesis
    [J]. Biswas, Anjan, 2017, National Institute of Optoelectronics (11): : 9 - 10
  • [5] Optical soliton perturbation with quadratic-cubic nonlinearity using a couple of strategic algorithms
    Biswas, Anjan
    Yildirim, Yakup
    Yasar, Emrullah
    Zhou, Qin
    Moshokoa, Seithuti P.
    Belic, Milivoj
    [J]. CHINESE JOURNAL OF PHYSICS, 2018, 56 (05) : 1990 - 1998
  • [6] Study of Optical Soliton Perturbation with Quadratic-Cubic Nonlinearity by Lie Symmetry and Group Invariance
    Asma, M.
    Bansal, A.
    Othman, W. A. M.
    Wong, B. R.
    Biswas, A.
    [J]. PHYSICS OF WAVE PHENOMENA, 2018, 26 (04) : 312 - 316
  • [7] Optical Soliton Perturbation with Generalized Quadratic-Cubic Nonlinearity by Semi-Inverse Variation
    Biswas, Anjan
    Yildirim, Yakup
    Ekici, Mehmet
    Aphane, Maggie
    Moshokoa, Seithuti P.
    Alshehri, Hashim M.
    [J]. OPTICS AND SPECTROSCOPY, 2022, 130 (04) : 244 - 247
  • [8] Study of Optical Soliton Perturbation with Quadratic-Cubic Nonlinearity by Lie Symmetry and Group Invariance
    M. Asma
    A. Bansal
    W. A. M. Othman
    B. R. Wong
    A. Biswas
    [J]. Physics of Wave Phenomena, 2018, 26 : 312 - 316
  • [9] OPTICAL SOLITON PERTURBATION WITH QUADRATIC-CUBIC NONLINEARITY BY SEMI-INVERSE VARIATIONAL PRINCIPLE
    Asma, Mir
    Othman, W. A. M.
    Wong, B. R.
    Biswas, Anjan
    [J]. PROCEEDINGS OF THE ROMANIAN ACADEMY SERIES A-MATHEMATICS PHYSICS TECHNICAL SCIENCES INFORMATION SCIENCE, 2017, 18 (04): : 331 - 336
  • [10] OPTICAL SOLITON PERTURBATION AND POLARIZATION WITH QUADRATIC-CUBIC NONLINEARITY BY SINE-GORDON EQUATION APPROACH
    Yildirim, Y.
    Topkara, E.
    Biswas, A.
    Triki, H.
    Ekici, M.
    Guggilla, P.
    Khan, S.
    Belic, M. R.
    [J]. JOURNAL OF PHYSICAL STUDIES, 2021, 25 (02):