Asymptotics and smoothing parameter selection for penalized spline regression with various loss functions

被引:0
|
作者
Yoshida, Takuma [1 ]
机构
[1] Kagoshima Univ, Kagoshima 8908580, Japan
关键词
asymptotic normality; B-spline; penalized splines; robust regression; smoothing parameter selection; STRUCTURED ADDITIVE REGRESSION; QUANTILE REGRESSION; P-SPLINES; SEMIPARAMETRIC REGRESSION; VARIABLE SELECTION; MODELS;
D O I
10.1111/stan.12088
中图分类号
O21 [概率论与数理统计]; C8 [统计学];
学科分类号
020208 ; 070103 ; 0714 ;
摘要
Penalized splines are used in various types of regression analyses, including non-parametric quantile, robust and the usual mean regression. In this paper, we focus on the penalized spline estimator with general convex loss functions. By specifying the loss function, we can obtain the mean estimator, quantile estimator and robust estimator. We will first study the asymptotic properties of penalized splines. Specifically, we will show the asymptotic bias and variance as well as the asymptotic normality of the estimator. Next, we will discuss smoothing parameter selection for the minimization of the mean integrated squares error. The new smoothing parameter can be expressed uniquely using the asymptotic bias and variance of the penalized spline estimator. To validate the new smoothing parameter selection method, we will provide a simulation. The simulation results show that the consistency of the estimator with the proposed smoothing parameter selection method can be confirmed and that the proposed estimator has better behavior than the estimator with generalized approximate cross-validation. A real data example is also addressed.
引用
收藏
页码:278 / 303
页数:26
相关论文
共 50 条
  • [31] Penalized B-spline estimator for regression functions using total variation penalty
    Jhong, Jae-Hwan
    Koo, Ja-Yong
    Lee, Seong-Whan
    JOURNAL OF STATISTICAL PLANNING AND INFERENCE, 2017, 184 : 77 - 93
  • [32] Fast and Stable Multiple Smoothing Parameter Selection in Smoothing Spline Analysis of Variance Models With Large Samples
    Helwig, Nathaniel E.
    Ma, Ping
    JOURNAL OF COMPUTATIONAL AND GRAPHICAL STATISTICS, 2015, 24 (03) : 715 - 732
  • [33] HISAPS: High-order smoothing spline with automatic parameter selection and constraints
    Broberg, Peter H.
    Lindgaard, Esben
    Olesen, Asbjorn M.
    Jensen, Simon M.
    Stagsted, Niklas K. K.
    Bjerg, Rasmus L.
    Grosselle, Riccardo
    Oca, Inigo Urcelay
    Bak, Brian L. V.
    SOFTWAREX, 2025, 29
  • [35] Optimum smoothing parameter selection for penalized least squares in form of linear mixed effect models
    Aydin, Dursun
    Memmedli, Memmedaga
    OPTIMIZATION, 2012, 61 (04) : 459 - 476
  • [36] Nonlinear regression modeling via regularized wavelets and smoothing parameter selection
    Fujii, Toru
    Konishi, Sadanori
    JOURNAL OF MULTIVARIATE ANALYSIS, 2006, 97 (09) : 2023 - 2033
  • [37] Gradient-based smoothing parameter selection for nonparametric regression estimation
    Henderson, Daniel J.
    Li, Qi
    Parmeter, Christopher F.
    Yao, Shuang
    JOURNAL OF ECONOMETRICS, 2015, 184 (02) : 233 - 241
  • [38] Smoothing parameter selection methods for nonparametric regression with spatially correlated errors
    Francisco-Fernandez, M
    Opsomer, JD
    CANADIAN JOURNAL OF STATISTICS-REVUE CANADIENNE DE STATISTIQUE, 2005, 33 (02): : 279 - 295
  • [39] Consistent tuning parameter selection in high-dimensional group-penalized regression
    Yaguang Li
    Yaohua Wu
    Baisuo Jin
    Science China(Mathematics), 2019, 62 (04) : 751 - 770
  • [40] BAYESIAN MODEL SELECTION AND PARAMETER ESTIMATION IN PENALIZED REGRESSION MODEL USING SMC SAMPLERS
    Thi Le Thu Nguyen
    Septier, Francois
    Peters, Gareth W.
    Delignon, Yves
    2013 PROCEEDINGS OF THE 21ST EUROPEAN SIGNAL PROCESSING CONFERENCE (EUSIPCO), 2013,