Penalized B-spline estimator for regression functions using total variation penalty

被引:16
|
作者
Jhong, Jae-Hwan [1 ]
Koo, Ja-Yong [1 ]
Lee, Seong-Whan [2 ]
机构
[1] Korea Univ, Dept Stat, Seoul 136701, South Korea
[2] Korea Univ, Dept Brain & Cognit Engn, Seoul 136701, South Korea
基金
新加坡国家研究基金会;
关键词
Adaptive estimation; Coordinate descent algorithm; LASSO; Oracle inequalities; Penalized least squares; VARIABLE SELECTION; MODELS; LASSO; REGULARIZATION; PATHS;
D O I
10.1016/j.jspi.2016.12.003
中图分类号
O21 [概率论与数理统计]; C8 [统计学];
学科分类号
020208 ; 070103 ; 0714 ;
摘要
We carry out a study on a penalized regression spline estimator with total variation penalty. In order to provide a spatially adaptive method, we consider total variation penalty for the estimating regression function. This paper adopts B-splines for both numerical implementation and asymptotic analysis because they have small supports, so the information matrices are sparse and banded. Once we express the estimator with a linear combination of B-splines, the coefficients are estimated by minimizing a penalized residual sum of squares. A new coordinate descent algorithm is introduced to handle total variation penalty determined by the B-spline coefficients. For large-sample inference, a nonasymptotic oracle inequality for penalized B-spline estimators is obtained. The oracle inequality is then used to show that the estimator is an optimal adaptive for the estimation of the regression function up to a logarithm factor. (C) 2017 Elsevier B.V. All rights reserved.
引用
收藏
页码:77 / 93
页数:17
相关论文
共 50 条
  • [1] Exact penalty method for knot selection of B-spline regression
    Shotaro Yagishita
    Jun-ya Gotoh
    [J]. Japan Journal of Industrial and Applied Mathematics, 2024, 41 : 1033 - 1059
  • [2] Exact penalty method for knot selection of B-spline regression
    Yagishita, Shotaro
    Gotoh, Jun-ya
    [J]. JAPAN JOURNAL OF INDUSTRIAL AND APPLIED MATHEMATICS, 2024, 41 (02) : 1033 - 1059
  • [3] B-spline estimation of regression functions with errors in variable
    Koo, JY
    Lee, KW
    [J]. STATISTICS & PROBABILITY LETTERS, 1998, 40 (01) : 57 - 66
  • [4] Simultaneous estimation of quantile regression functions using B-splines and total variation penalty
    Jhong, Jae-Hwan
    Koo, Ja-Yong
    [J]. COMPUTATIONAL STATISTICS & DATA ANALYSIS, 2019, 133 : 228 - 244
  • [5] Penalized logspline density estimation using total variation penalty
    Bak, Kwan-Young
    Jhong, Jae-Hwan
    Lee, JungJun
    Shin, Jae-Kyung
    Koo, Ja-Yong
    [J]. COMPUTATIONAL STATISTICS & DATA ANALYSIS, 2021, 153
  • [6] Random regression analyses using B-spline functions to model growth of Nellore cattle
    Boligon, A. A.
    Mercadante, M. E. Z.
    Lobo, R. B.
    Baldi, F.
    Albuquerque, L. G.
    [J]. ANIMAL, 2012, 6 (02) : 212 - 220
  • [7] Impacts of the Different Spline Orders on the B-spline Association Estimator
    Kurt, Zeyneb
    Aydin, Nizamettin
    Altay, Gokmen
    [J]. 2013 IEEE 13TH INTERNATIONAL CONFERENCE ON BIOINFORMATICS AND BIOENGINEERING (BIBE), 2013,
  • [8] Optimal design of smoothing spline surface using B-spline functions
    Fujioka, H
    Kano, H
    Egerstedt, M
    [J]. SICE 2004 ANNUAL CONFERENCE, VOLS 1-3, 2004, : 107 - 110
  • [9] VIBRATION OF SKEW PLATES BY USING B-SPLINE FUNCTIONS
    MIZUSAWA, T
    KAJITA, T
    NARUOKA, M
    [J]. JOURNAL OF SOUND AND VIBRATION, 1979, 62 (02) : 301 - 308
  • [10] Estimation of complicated distributions using B-spline functions
    Zong, Z
    Lam, KY
    [J]. STRUCTURAL SAFETY, 1998, 20 (04) : 341 - 355