Growth series and Ehrhart polynomials associated to root lattices

被引:6
|
作者
Bacher, R
De la Harpe, P
Venkov, B
机构
[1] Univ Grenoble 1, F-38402 St Martin Dheres, France
[2] Univ Geneva, Sect Math, CH-1211 Geneva 24, Switzerland
[3] VA Steklov Math Inst, St Petersbourgs Dept, St Petersburg 191011, Russia
关键词
D O I
10.5802/aif.1689
中图分类号
O1 [数学];
学科分类号
0701 ; 070101 ;
摘要
Given a root system R in one of the families A, B, C, D, F, G and the free abelian group that it generates, we compute explicitly the growth series of this group with respect to R. The results can be interpreted in terms of the Ehrhart polynomial of the convex hull of R.
引用
收藏
页码:727 / +
页数:37
相关论文
共 50 条
  • [31] Ehrhart Polynomials of Matroid Polytopes and Polymatroids
    De Loera, Jesus A.
    Haws, David C.
    Koeppe, Matthias
    DISCRETE & COMPUTATIONAL GEOMETRY, 2009, 42 (04) : 670 - 702
  • [32] Ehrhart Polynomials of Matroid Polytopes and Polymatroids
    Jesús A. De Loera
    David C. Haws
    Matthias Köppe
    Discrete & Computational Geometry, 2009, 42 (4) : 703 - 704
  • [33] Rational Ehrhart quasi-polynomials
    Linke, Eva
    JOURNAL OF COMBINATORIAL THEORY SERIES A, 2011, 118 (07) : 1966 - 1978
  • [34] Ehrhart polynomials of rank two matroids
    Ferroni, Luis
    Jochemko, Katharina
    Schroter, Benjamin
    ADVANCES IN APPLIED MATHEMATICS, 2022, 141
  • [35] Counterexamples of the Conjecture on Roots of Ehrhart Polynomials
    Akihiro Higashitani
    Discrete & Computational Geometry, 2012, 47 : 618 - 623
  • [36] Ehrhart polynomials of lattice polyhedral functions
    Chen, BF
    Integer Points in Polyhedra-Geometry, Number Theory, Algebra, Optimization, 2005, 374 : 37 - 63
  • [37] Interlacing Ehrhart polynomials of reflexive polytopes
    Akihiro Higashitani
    Mario Kummer
    Mateusz Michałek
    Selecta Mathematica, 2017, 23 : 2977 - 2998
  • [38] q-ANALOGUES OF EHRHART POLYNOMIALS
    Chapoton, F.
    PROCEEDINGS OF THE EDINBURGH MATHEMATICAL SOCIETY, 2016, 59 (02) : 339 - 358
  • [39] A finite calculus approach to Ehrhart polynomials
    Sam, Steven V.
    Woods, Kevin M.
    ELECTRONIC JOURNAL OF COMBINATORICS, 2010, 17 (01):
  • [40] Volumes and Ehrhart polynomials of flow polytopes
    Meszaros, Karola
    Morales, Alejandro H.
    MATHEMATISCHE ZEITSCHRIFT, 2019, 293 (3-4) : 1369 - 1401