Growth series and Ehrhart polynomials associated to root lattices

被引:6
|
作者
Bacher, R
De la Harpe, P
Venkov, B
机构
[1] Univ Grenoble 1, F-38402 St Martin Dheres, France
[2] Univ Geneva, Sect Math, CH-1211 Geneva 24, Switzerland
[3] VA Steklov Math Inst, St Petersbourgs Dept, St Petersburg 191011, Russia
关键词
D O I
10.5802/aif.1689
中图分类号
O1 [数学];
学科分类号
0701 ; 070101 ;
摘要
Given a root system R in one of the families A, B, C, D, F, G and the free abelian group that it generates, we compute explicitly the growth series of this group with respect to R. The results can be interpreted in terms of the Ehrhart polynomial of the convex hull of R.
引用
收藏
页码:727 / +
页数:37
相关论文
共 50 条
  • [1] Growth series and Ehrhart series for root lattices
    Bacher, R
    de la Harpe, P
    Venkov, B
    COMPTES RENDUS DE L ACADEMIE DES SCIENCES SERIE I-MATHEMATIQUE, 1997, 325 (11): : 1137 - 1142
  • [2] ROOT POLYTOPES AND GROWTH SERIES OF ROOT LATTICES
    Ardila, Federico
    Beck, Matthias
    Hosten, Serkan
    Pfeifle, Julian
    Seashore, Kim
    SIAM JOURNAL ON DISCRETE MATHEMATICS, 2011, 25 (01) : 360 - 378
  • [3] Some Computational Study of the Root Distribution of Ehrhart Polynomials
    Hachimori, Masahiro
    Yamada, Yumi
    INTERNATIONAL GAME THEORY REVIEW, 2023, 25 (03)
  • [4] The root distributions of Ehrhart polynomials of free sums of reflexive polytopes
    Hachimori, Masahiro
    Higashitani, Akihiro
    Yamada, Yumi
    ELECTRONIC JOURNAL OF COMBINATORICS, 2022, 29 (03): : 1 - 17
  • [5] The Distribution of Roots of Ehrhart Polynomials for the Dual of Root Polytopes of Type C
    Akihiro Higashitani
    Yumi Yamada
    Graphs and Combinatorics, 2023, 39
  • [6] Mixed Ehrhart polynomials
    Haase, Christian
    Juhnke-Kubitzke, Martina
    Sanyal, Raman
    Theobald, Thorsten
    ELECTRONIC JOURNAL OF COMBINATORICS, 2017, 24 (01):
  • [7] Ehrhart tensor polynomials
    Berg, Soeren
    Jochemko, Katharina
    Silverstein, Laura
    LINEAR ALGEBRA AND ITS APPLICATIONS, 2018, 539 : 72 - 93
  • [8] Characteristic and Ehrhart Polynomials
    Andreas Blass
    Bruce E. Sagan
    Journal of Algebraic Combinatorics, 1998, 7 : 115 - 126
  • [9] Characteristic and Ehrhart polynomials
    Blass, A
    Sagan, BE
    JOURNAL OF ALGEBRAIC COMBINATORICS, 1998, 7 (02) : 115 - 126
  • [10] GENERALIZED EHRHART POLYNOMIALS
    Chen, Sheng
    Li, Nan
    Sam, Steven V.
    TRANSACTIONS OF THE AMERICAN MATHEMATICAL SOCIETY, 2012, 364 (01) : 551 - 569