Persistence of a discrete reaction-diffusion predator-prey system

被引:1
|
作者
Tineo, A [1 ]
机构
[1] Univ Los Andes, Dept Mate, Fac Ciencias, Los Andes, Venezuela
关键词
discrete reaction-diffusion; predator-prey system; T-periodic functions;
D O I
10.1016/S0362-546X(98)00247-8
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
The T-periodic reaction-diffusion predator-prey model is considered: ut = d1(t)Δu+u[a(t,x)-b(t,x)u-c(t,x)v], vt = d2(t)Δv+v[-e(t,x)+g(t,x)u-f(t,x)v], ∂u/∂v = 0 on [, ∞]×∂D, where D is the bounded region in Rn with smooth boundary, d1,d2 are smooth strictly positive T-periodic functions, a,b,c,e,f,g are smooth functions on R×D which are T-periodic in t,b,c,e,f,g are positive and ∂/∂v denotes differentiation in the direction of the outward normal. The model has a positive T-periodic solution if the principal eigenvalue of the operator M(v) = vt-d2(t)Δv-[g(t,x)U(t,x)-e(t,x)]v is negative.
引用
收藏
页码:627 / 634
页数:8
相关论文
共 50 条
  • [21] Pattern dynamics of a reaction-diffusion predator-prey system with both refuge and harvesting
    Guin, Lakshmi Narayan
    Pal, Sudipta
    Chakravarty, Santabrata
    Djilali, Salih
    INTERNATIONAL JOURNAL OF BIOMATHEMATICS, 2021, 14 (01)
  • [22] Dynamical Complexity and Numerical Bifurcation Analysis of a Reaction-Diffusion Predator-Prey System
    Lajmiri, Z.
    Orak, I
    Khoshsiar, R.
    Azizi, P.
    JOURNAL OF APPLIED NONLINEAR DYNAMICS, 2020, 9 (02) : 323 - 337
  • [23] Uniform persistence and positive periodic solutions of predator-prey reaction-diffusion systems with spatial heterogeneity
    Zhao, XQ
    DIFFERENTIAL EQUATIONS AND CONTROL THEORY, 1996, 176 : 483 - 491
  • [24] Stochastic reaction-diffusion system modeling predator-prey interactions with prey-taxis and noises
    Bendahmane, M.
    Nzeti, H.
    Tagoudjeu, J.
    Zagour, M.
    CHAOS, 2023, 33 (07)
  • [25] Global boundedness of solutions in a reaction-diffusion system of predator-prey model with prey-taxis
    He, Xiao
    Zheng, Sining
    APPLIED MATHEMATICS LETTERS, 2015, 49 : 73 - 77
  • [26] SPATIOTEMPORAL DYNAMICS OF TELEGRAPH REACTION-DIFFUSION PREDATOR-PREY MODELS
    Hernandez-Martinez, Eliseo
    Puebla, Hector
    Perez-Munoz, Teresa
    Gonzalez-Brambila, Margarita
    Velasco-Hernandez, Jorge X.
    BIOMAT 2012: INTERNATIONAL SYMPOSIUM ON MATHEMATICAL AND COMPUTATIONAL BIOLOGY, 2013, : 268 - 281
  • [27] TRAVELING WAVE SOLUTIONS OF A REACTION-DIFFUSION PREDATOR-PREY MODEL
    Liu, Jiang
    Shang, Xiaohui
    Du, Zengji
    DISCRETE AND CONTINUOUS DYNAMICAL SYSTEMS-SERIES S, 2017, 10 (05): : 1063 - 1078
  • [28] On the Stability Analysis of a Reaction-Diffusion Predator-Prey Model Incorporating Prey Refuge
    Lazaar O.
    Serhani M.
    Alla A.
    Raissi N.
    International Journal of Applied and Computational Mathematics, 2022, 8 (4)
  • [29] Global convergence of a reaction-diffusion predator-prey model with stage structure for the predator
    Xu, Rui
    Chaplain, M. A. J.
    Davidson, F. A.
    APPLIED MATHEMATICS AND COMPUTATION, 2006, 176 (01) : 388 - 401
  • [30] Qualitative Analysis for a Reaction-Diffusion Predator-Prey Model with Disease in the Prey Species
    Qiao, Meihong
    Liu, Anping
    Forys, Urszula
    JOURNAL OF APPLIED MATHEMATICS, 2014,