Evaluate fuzzy Riemann integrals using the Monte Carlo method

被引:14
|
作者
Wu, HC [1 ]
机构
[1] Natl Chi Nan Univ, Dept Informat Management, Puli 545, Nantou, Taiwan
关键词
fuzzy numbers; (improper) fuzzy Riemann integrals; Monte Carlo method; strong law of large numbers; mathematical programming problems;
D O I
10.1006/jmaa.2001.7659
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
Techniques for using the Monte Carlo method to evaluate fuzzy Riemann integrals and improper fuzzy Riemann integrals are proposed in this paper. Owing to the alpha-level set of the (improper) fuzzy Riemann integral being the closed interval whose end points are the classical (improper) Riemann integrals, it is possible to invoke the Monte Carlo method to approximate the end points of the alpha-level closed intervals. We develop the strong law of large numbers for fuzzy random variables in order to give the techniques proposed for evaluating the (improper) fuzzy Riemann integrals using the Monte Carlo approach more theoretical support. The membership function of the (improper) fuzzy Riemann integral can be transformed into mathematical programming problems. Therefore, we can obtain the membership value by solving the mathematical programming problems using the commercial optimizer. (C) 2001 Elsevier Science.
引用
收藏
页码:324 / 343
页数:20
相关论文
共 50 条
  • [31] Efficient quadrature rules for illumination integrals: From quasi monte carlo to bayesian monte carlo
    Marques, Ricardo
    Bouville, Christian
    Santos, Luís Paulo
    Bouatouch, Kadi
    Synthesis Lectures on Computer Graphics and Animation, 2015, 19 : 1 - 82
  • [33] Random Riemann Sum estimator versus Monte Carlo
    Urmeneta, Henar
    Hernandez, Victor
    COMPUTATIONAL STATISTICS & DATA ANALYSIS, 2007, 51 (09) : 4717 - 4730
  • [34] A precise new method to evaluate Monte Carlo simulations of electron transport in semiconductors
    Urban, M
    Siegrist, MR
    Asadauskas, L
    Raguotis, R
    Brazis, R
    APPLIED PHYSICS LETTERS, 1996, 69 (12) : 1776 - 1778
  • [35] Riemann manifold Langevin and Hamiltonian Monte Carlo methods
    Girolami, Mark
    Calderhead, Ben
    JOURNAL OF THE ROYAL STATISTICAL SOCIETY SERIES B-STATISTICAL METHODOLOGY, 2011, 73 : 123 - 214
  • [36] Monte Carlo simulation to evaluate slope stability
    Chandler, DS
    UNCERTAINTY IN THE GEOLOGIC ENVIRONMENT: FROM THEORY TO PRACTICE, VOLS 1 AND 2: PROCEEDINGS OF UNCERTAINTY '96, 1996, (58): : 474 - 493
  • [37] Monte Carlo method
    Volz, Sebastian
    MICROSCALE AND NANOSCALE HEAT TRANSFER, 2007, 107 : 133 - 154
  • [38] A MONTE-CARLO METHOD FOR QUANTUM BOLTZMANN STATISTICAL-MECHANICS USING FOURIER REPRESENTATIONS OF PATH-INTEGRALS
    FREEMAN, DL
    DOLL, JD
    ABSTRACTS OF PAPERS OF THE AMERICAN CHEMICAL SOCIETY, 1984, 187 (APR): : 89 - PHYS
  • [39] A MONTE-CARLO METHOD FOR QUANTUM BOLTZMANN STATISTICAL-MECHANICS USING FOURIER REPRESENTATIONS OF PATH-INTEGRALS
    FREEMAN, DL
    DOLL, JD
    JOURNAL OF CHEMICAL PHYSICS, 1984, 80 (11): : 5709 - 5718
  • [40] THE MONTE CARLO METHOD
    METROPOLIS, N
    ULAM, S
    JOURNAL OF THE AMERICAN STATISTICAL ASSOCIATION, 1949, 44 (247) : 335 - 341