Evaluate fuzzy Riemann integrals using the Monte Carlo method

被引:14
|
作者
Wu, HC [1 ]
机构
[1] Natl Chi Nan Univ, Dept Informat Management, Puli 545, Nantou, Taiwan
关键词
fuzzy numbers; (improper) fuzzy Riemann integrals; Monte Carlo method; strong law of large numbers; mathematical programming problems;
D O I
10.1006/jmaa.2001.7659
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
Techniques for using the Monte Carlo method to evaluate fuzzy Riemann integrals and improper fuzzy Riemann integrals are proposed in this paper. Owing to the alpha-level set of the (improper) fuzzy Riemann integral being the closed interval whose end points are the classical (improper) Riemann integrals, it is possible to invoke the Monte Carlo method to approximate the end points of the alpha-level closed intervals. We develop the strong law of large numbers for fuzzy random variables in order to give the techniques proposed for evaluating the (improper) fuzzy Riemann integrals using the Monte Carlo approach more theoretical support. The membership function of the (improper) fuzzy Riemann integral can be transformed into mathematical programming problems. Therefore, we can obtain the membership value by solving the mathematical programming problems using the commercial optimizer. (C) 2001 Elsevier Science.
引用
收藏
页码:324 / 343
页数:20
相关论文
共 50 条
  • [21] Macrostate dissection of thermodynamic Monte Carlo integrals
    Church, BW
    Ulitsky, A
    Shalloway, D
    MONTE CARLO METHODS IN CHEMICAL PHYSICS, 1999, 105 : 273 - 310
  • [22] Tropical Monte Carlo quadrature for Feynman integrals
    Borinsky, Michael
    ANNALES DE L INSTITUT HENRI POINCARE D, 2023, 10 (04): : 635 - 685
  • [23] Acceleration of Optical Photon Monte Carlo Simulations Using the Macro Monte Carlo Method
    Jacqmin, D.
    MEDICAL PHYSICS, 2012, 39 (06) : 3623 - 3623
  • [24] Evaluate the task-specific measurement uncertainty of laser tracker using Monte-Carlo method
    Li Jie
    Wu Shibin
    Wu Fan
    Kuang Long
    Cao Xuedong
    5TH INTERNATIONAL SYMPOSIUM ON ADVANCED OPTICAL MANUFACTURING AND TESTING TECHNOLOGIES: OPTICAL TEST AND MEASUREMENT TECHNOLOGY AND EQUIPMENT, 2010, 7656
  • [25] Critical Path Method based on Fuzzy Numbers: Comparison with Monte Carlo Method
    Doskocil, Radek
    Doubravsky, Karel
    CREATING GLOBAL COMPETITIVE ECONOMIES: 2020 VISION PLANNING & IMPLEMENTATION, VOLS 1-3, 2013, : 1402 - 1411
  • [26] Power system risk assessment using a hybrid method of fuzzy set and Monte Carlo simulation
    Li, Wenyuan
    Zhou, Jiaqi
    Xie, Kaigui
    Xiong, Xiaofu
    IEEE TRANSACTIONS ON POWER SYSTEMS, 2008, 23 (02) : 336 - 343
  • [27] Calculating Pi Using the Monte Carlo Method
    Williamson, Timothy
    PHYSICS TEACHER, 2013, 51 (08): : 467 - 468
  • [28] The simulation of detonations using a Monte Carlo method
    Long, LN
    Anderson, JB
    RAREFIED GAS DYNAMICS, 2001, 585 : 653 - 657
  • [29] Convolution/superposition using the Monte Carlo method
    Naqvi, SA
    Earl, MA
    Shepard, DM
    PHYSICS IN MEDICINE AND BIOLOGY, 2003, 48 (14): : 2101 - 2121
  • [30] Using diffusion Monte Carlo to evaluate vibrational frequencies of fluxional systems
    McCoy, Anne B.
    Hinkle, Charlotte E.
    ABSTRACTS OF PAPERS OF THE AMERICAN CHEMICAL SOCIETY, 2008, 235