Multiple solutions for a quasilinear Schrodinger equation

被引:155
|
作者
Fang, Xiang-Dong [1 ]
Szulkin, Andrzej [2 ]
机构
[1] Dalian Univ Technol, Sch Math Sci, Dalian 116024, Peoples R China
[2] Stockholm Univ, Dept Math, S-10691 Stockholm, Sweden
基金
瑞典研究理事会;
关键词
Quasilinear Schrodinger equation; Multiplicity of solutions; Nehari manifold; SOLITON-SOLUTIONS; EXISTENCE;
D O I
10.1016/j.jde.2012.11.017
中图分类号
O1 [数学];
学科分类号
0701 ; 070101 ;
摘要
In this paper we consider the quasilinear Schrodinger equation -Delta u + V(x)u - Delta(u(2))u = g(x, u), x is an element of R-N, where g and V are periodic in x(1), ... , x(N) and g is odd in u, subcritical and satisfies a monotonicity condition. We employ the approach developed in Szulkin and Weth (2009, 2010) [15,16] and obtain infinitely many geometrically distinct solutions. (C) 2012 Elsevier Inc. All rights reserved.
引用
收藏
页码:2015 / 2032
页数:18
相关论文
共 50 条