G-INVARIANT POSITIVE SOLUTIONS FOR A QUASILINEAR SCHRODINGER EQUATION

被引:0
|
作者
Adachi, Shinji [1 ]
Watanabe, Tatsuya [2 ]
机构
[1] Shizuoka Univ, Div Basic Engn, Fac Engn, Naka Ku, Hamamatsu, Shizuoka 4328561, Japan
[2] Osaka City Univ, Adv Math Inst, Sumiyoshi Ku, Osaka 5588585, Japan
基金
日本学术振兴会;
关键词
SCALAR FIELD-EQUATIONS; SOLITON-SOLUTIONS; ELLIPTIC-EQUATIONS; PERIODIC-SOLUTIONS; EXISTENCE; THEOREM;
D O I
暂无
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
We are concerned with a quasilinear elliptic equation of the form -Delta u + a(x)u - Delta(vertical bar u vertical bar(alpha))vertical bar u vertical bar(alpha-2) u = h(u) in R-N, where alpha > 1 and N >= 1. By using variational approaches, we prove the existence of at least one positive solution of the above equation under suitable conditions on a(x) and h. In particular, we are interested in the situation that a(x) is invariant under the finite group action G.
引用
收藏
页码:289 / 324
页数:36
相关论文
共 50 条