Dealing with Rounding Error Problems in Evolutionary Physical Simulation

被引:0
|
作者
Pilat, Marcin L. [1 ]
Suzuki, Reiji [1 ]
Arita, Takaya [1 ]
机构
[1] Nagoya Univ, Grad Sch Informat Sci, Chikusa Ku, Furo Cho, Nagoya, Aichi 4648601, Japan
关键词
physical simulation; floating point; rounding errors; evolutionary computation; artificial life;
D O I
暂无
中图分类号
TP [自动化技术、计算机技术];
学科分类号
0812 ;
摘要
This paper introduces the problem of floating-point rounding errors in physical simulation. A simple virtual creature is simulated in a physical environment for a specified number of time steps. The effect of rounding errors is illustrated by varying the initial position of the creature which causes a change in the fitness value computed by a simple distance-based fitness function. With a large evaluation time, these rounding errors can produce significantly large differences in fitness. A discussion is provided on the importance of this finding for evolutionary simulations, including suggestions to alleviate the problem.
引用
收藏
页码:658 / 661
页数:4
相关论文
共 50 条
  • [31] Rounding error: A distorting influence on index data
    Kozicki, S
    Hoffman, B
    JOURNAL OF MONEY CREDIT AND BANKING, 2004, 36 (03) : 319 - 338
  • [32] ROUNDING ERROR IN REGRESSION - THE APPROPRIATENESS OF SHEPPARD CORRECTIONS
    DEMPSTER, AP
    RUBIN, DB
    JOURNAL OF THE ROYAL STATISTICAL SOCIETY SERIES B-METHODOLOGICAL, 1983, 45 (01): : 51 - 59
  • [33] A NEW APPROACH TO PROBABILISTIC ROUNDING ERROR ANALYSIS
    Higham, Nicholas J.
    Mary, Theo
    SIAM JOURNAL ON SCIENTIFIC COMPUTING, 2019, 41 (05): : A2815 - A2835
  • [34] The floating point: Rounding error in timing devices
    Faux, David A.
    Godolphin, Janet
    AMERICAN JOURNAL OF PHYSICS, 2021, 89 (08) : 815 - 816
  • [35] Measurement error models and variance estimation in the presence of rounding error effects
    T. Burr
    M. S. Hamada
    T. Cremers
    B. P. Weaver
    J. Howell
    S. Croft
    S. B. Vardeman
    Accreditation and Quality Assurance, 2011, 16 : 347 - 359
  • [36] Measurement error models and variance estimation in the presence of rounding error effects
    Burr, T.
    Hamada, M. S.
    Cremers, T.
    Weaver, B. P.
    Howell, J.
    Croft, S.
    Vardeman, S. B.
    ACCREDITATION AND QUALITY ASSURANCE, 2011, 16 (07) : 347 - 359
  • [37] Stochastic rounding: implementation, error analysis and applications
    Croci, Matteo
    Fasi, Massimiliano
    Higham, Nicholas J.
    Mary, Theo
    Mikaitis, Mantas
    ROYAL SOCIETY OPEN SCIENCE, 2022, 9 (03):
  • [38] A unified rounding error bound for polynomial evaluation
    Barrio, R
    ADVANCES IN COMPUTATIONAL MATHEMATICS, 2003, 19 (04) : 385 - 399
  • [39] A posteriori error estimates for approximations of evolutionary convection-diffusion problems
    Repin S.I.
    Tomar S.K.
    Journal of Mathematical Sciences, 2010, 170 (4) : 554 - 566
  • [40] Fully reliable error control for first-order evolutionary problems
    Holm, Barbel
    Matculevich, Svetlana
    COMPUTERS & MATHEMATICS WITH APPLICATIONS, 2018, 75 (04) : 1302 - 1329