Hydrogen-Enhanced Vacancy Diffusion in Metals

被引:31
|
作者
Du, Jun-Ping [1 ,2 ]
Geng, W. T. [2 ,3 ]
Arakawa, Kazuto [4 ]
Li, Ju [5 ,6 ]
Ogata, Shigenobu [1 ,2 ]
机构
[1] Kyoto Univ, Ctr Elements Strategy Initiat Struct Mat, Kyoto 6068501, Japan
[2] Osaka Univ, Dept Mech Sci & Bioengn, Osaka 5608531, Japan
[3] Univ Sci & Technol Beijing, Beijing 100083, Peoples R China
[4] Shimane Univ, Next Generat TATARA Cocreat Ctr, Org Ind Innovat, Matsue, Shimane 6908504, Japan
[5] MIT, Dept Nucl Sci & Engn, 77 Massachusetts Ave, Cambridge, MA 02139 USA
[6] MIT, Dept Mat Sci & Engn, Cambridge, MA 02139 USA
来源
JOURNAL OF PHYSICAL CHEMISTRY LETTERS | 2020年 / 11卷 / 17期
关键词
REDUCING GRAIN-BOUNDARY; SUPERABUNDANT VACANCIES; SOLUTE SEGREGATION; FORMATION ENERGIES; ATOMIC DIFFUSION; DISLOCATION LINE; H ALLOYS; NUCLEATION; FAILURE; STORAGE;
D O I
10.1021/acs.jpclett.0c01798
中图分类号
O64 [物理化学(理论化学)、化学物理学];
学科分类号
070304 ; 081704 ;
摘要
Vacancy diffusion is fundamental to materials science. Hydrogen atoms bind strongly to vacancies and are often believed to retard vacancy diffusion. Here, we use a potential-of-mean-force method to study the diffusion of vacancies in Cu and Pd. We find H atoms, instead of dragging, enhance the diffusivity of vacancies due to a positive hydrogen Gibbs excess at the saddle-point: that is, the migration saddle attracts more H than the vacancy ground state, characterized by an activation excess Gamma(m)(H) approximate to 1 H, together with also-positive migration activation volume Omega(m) and activation entropy S-m. Thus, according to the Gibbs adsorption isotherm generalized to the activation path, a higher mu(H) significantly lowers the migration free-energy barrier. This is verified by ab initio grand canonical Monte Carlo simulations and direct molecular dynamics simulations. This trend is believed to be generic for migrating dislocations, grain boundaries, and so on that also have a higher capacity for attracting H atoms due to a positive activation volume at the migration saddles.
引用
收藏
页码:7015 / 7020
页数:6
相关论文
共 50 条
  • [31] Effect of hydrogen on vacancy diffusion
    Restrepo, Sebastian Echeverri
    Lambert, Henry
    Paxton, Anthony T.
    PHYSICAL REVIEW MATERIALS, 2020, 4 (11)
  • [32] Hydrogen Embrittlement and Hydrogen-Enhanced Strain-Induced Vacancies in α-Iron
    Matsumoto, Y.
    Kurihara, N.
    Suzuki, H.
    Takai, K.
    TMS 2017 146TH ANNUAL MEETING & EXHIBITION SUPPLEMENTAL PROCEEDINGS, 2017, : 571 - 577
  • [33] Hydrogen-enhanced fatigue crack growth of Alloy 600
    Ho, JT
    Yu, GP
    MATERIALS CHEMISTRY AND PHYSICS, 1996, 45 (03) : 262 - 273
  • [34] Hydrogen-enhanced recrystallization in N+-implanted GaAs
    J. Wang
    Z. Li
    W. Xu
    X. Guo
    W. Cai
    Q. Wang
    X. Chen
    W. Lu
    Applied Physics A, 2004, 79 : 1809 - 1811
  • [35] Hydrogen-enhanced homogeneous dislocation nucleation of nanoindentation in nickel
    Chen, Yu
    Zhang, Yin
    Chen, Dengke
    MATERIALS TODAY COMMUNICATIONS, 2023, 37
  • [36] Theory of isotope diffusion in a material with multiple species and its implications for hydrogen-enhanced electrical conductivity in olivine
    Karato, Shun-ichiro
    PHYSICS OF THE EARTH AND PLANETARY INTERIORS, 2013, 219 : 49 - 54
  • [37] Influence of hydrogen isotopes on vacancy formation and antisite defect diffusion in palladium and vanadium metals
    Setyawan, Wahyu
    Senor, David J.
    COMPUTATIONAL MATERIALS SCIENCE, 2021, 197
  • [38] Enumeration of the hydrogen-enhanced localized plasticity mechanism for hydrogen embrittlement in structural materials
    Martin, May L.
    Dadfarnia, Mohsen
    Nagao, Akihide
    Wang, Shuai
    Sofronis, Petros
    ACTA MATERIALIA, 2019, 165 : 734 - 750
  • [39] Hydrogen-enhanced localized plasticity-a mechanism for hydrogen-related fracture
    Birnbaum, H.K.
    Sofronis, P.
    Materials Science and Engineering A, 1994, A176 (1-2) : 191 - 202
  • [40] Quantitative tests revealing hydrogen-enhanced dislocation motion in α-iron
    Huang, Longchao
    Chen, Dengke
    Xie, Degang
    Li, Suzhi
    Zhang, Yin
    Zhu, Ting
    Raabe, Dierk
    Ma, En
    Li, Ju
    Shan, Zhiwei
    NATURE MATERIALS, 2023, 22 (06) : 710 - +