Hydrogen-Enhanced Vacancy Diffusion in Metals

被引:31
|
作者
Du, Jun-Ping [1 ,2 ]
Geng, W. T. [2 ,3 ]
Arakawa, Kazuto [4 ]
Li, Ju [5 ,6 ]
Ogata, Shigenobu [1 ,2 ]
机构
[1] Kyoto Univ, Ctr Elements Strategy Initiat Struct Mat, Kyoto 6068501, Japan
[2] Osaka Univ, Dept Mech Sci & Bioengn, Osaka 5608531, Japan
[3] Univ Sci & Technol Beijing, Beijing 100083, Peoples R China
[4] Shimane Univ, Next Generat TATARA Cocreat Ctr, Org Ind Innovat, Matsue, Shimane 6908504, Japan
[5] MIT, Dept Nucl Sci & Engn, 77 Massachusetts Ave, Cambridge, MA 02139 USA
[6] MIT, Dept Mat Sci & Engn, Cambridge, MA 02139 USA
来源
JOURNAL OF PHYSICAL CHEMISTRY LETTERS | 2020年 / 11卷 / 17期
关键词
REDUCING GRAIN-BOUNDARY; SUPERABUNDANT VACANCIES; SOLUTE SEGREGATION; FORMATION ENERGIES; ATOMIC DIFFUSION; DISLOCATION LINE; H ALLOYS; NUCLEATION; FAILURE; STORAGE;
D O I
10.1021/acs.jpclett.0c01798
中图分类号
O64 [物理化学(理论化学)、化学物理学];
学科分类号
070304 ; 081704 ;
摘要
Vacancy diffusion is fundamental to materials science. Hydrogen atoms bind strongly to vacancies and are often believed to retard vacancy diffusion. Here, we use a potential-of-mean-force method to study the diffusion of vacancies in Cu and Pd. We find H atoms, instead of dragging, enhance the diffusivity of vacancies due to a positive hydrogen Gibbs excess at the saddle-point: that is, the migration saddle attracts more H than the vacancy ground state, characterized by an activation excess Gamma(m)(H) approximate to 1 H, together with also-positive migration activation volume Omega(m) and activation entropy S-m. Thus, according to the Gibbs adsorption isotherm generalized to the activation path, a higher mu(H) significantly lowers the migration free-energy barrier. This is verified by ab initio grand canonical Monte Carlo simulations and direct molecular dynamics simulations. This trend is believed to be generic for migrating dislocations, grain boundaries, and so on that also have a higher capacity for attracting H atoms due to a positive activation volume at the migration saddles.
引用
收藏
页码:7015 / 7020
页数:6
相关论文
共 50 条
  • [21] Hydrogen-enhanced dechlorination in contaminated coastal sediments
    Gruden, CL
    Albrecht, ID
    Adriaens, P
    REMEDIATION AND BENEFICIAL REUSE OF CONTAMINATED SEDIMENTS, 2002, : 87 - 94
  • [22] Hydrogen-enhanced entropy (HEENT): A concept for hydrogen embrittlement prediction
    Moshtaghi, Masoud
    Safyari, Mahdieh
    Khonsari, M. M.
    INTERNATIONAL JOURNAL OF HYDROGEN ENERGY, 2024, 53 : 434 - 440
  • [23] Hydrogen-enhanced clusterization of carbon in crystalline silicon
    Gorelkinskii, YV
    Abdullin, KA
    Mukashev, BN
    Tojibaev, GO
    MATERIALS SCIENCE & ENGINEERING C-BIOMIMETIC AND SUPRAMOLECULAR SYSTEMS, 2003, 23 (1-2): : 67 - 70
  • [24] HYDROGEN INTRODUCTION AND HYDROGEN-ENHANCED THERMAL DONOR FORMATION IN SILICON
    STEIN, HJ
    HAHN, SK
    JOURNAL OF APPLIED PHYSICS, 1994, 75 (07) : 3477 - 3484
  • [25] Hydrogen-enhanced catalytic hydrothermal gasification of biomass
    Reimer, J.
    Mueller, S.
    De Boni, E.
    Vogel, F.
    BIOMASS CONVERSION AND BIOREFINERY, 2017, 7 (04) : 511 - 519
  • [26] Hydrogen-enhanced recrystallization in N+-implanted GaAs
    Wang, J
    Li, Z
    Xu, W
    Guo, X
    Cai, W
    Wang, Q
    Chen, X
    Lu, W
    APPLIED PHYSICS A-MATERIALS SCIENCE & PROCESSING, 2004, 79 (07): : 1809 - 1811
  • [27] Erratum to: Hydrogen-enhanced catalytic hydrothermal gasification of biomass
    J. Reimer
    S. Müller
    E. De Boni
    F. Vogel
    Biomass Conversion and Biorefinery, 2017, 7 : 521 - 521
  • [28] HYDROGEN-ENHANCED LOCALIZED PLASTICITY - A MECHANISM FOR HYDROGEN-RELATED FRACTURE
    BIRNBAUM, HK
    SOFRONIS, P
    MATERIALS SCIENCE AND ENGINEERING A-STRUCTURAL MATERIALS PROPERTIES MICROSTRUCTURE AND PROCESSING, 1994, 176 (1-2): : 191 - 202
  • [29] Hydrogen-enhanced cracking of 2205 duplex stainless steel
    Tsay, L. W.
    Young, M. C.
    Shin, C. -S.
    Chan, S. L. I.
    FATIGUE & FRACTURE OF ENGINEERING MATERIALS & STRUCTURES, 2007, 30 (12) : 1228 - 1236
  • [30] Hydrogen-enhanced clusterization of intrinsic defects and impurities in silicon
    Mukashev, BN
    Abdullin, KA
    Gorelkinskii, YV
    Tamendarov, MF
    Tokmoldin, SZ
    PHYSICA B, 2001, 302 : 249 - 256