Ruthenium oxide cryogenic temperature sensors

被引:20
|
作者
Sahul, R [1 ]
Tasovski, V [1 ]
Sudarshan, TS [1 ]
机构
[1] MMI, Fairfax, VA 22031 USA
关键词
resistance thermometry; cryogenics; sensors; nanopowders; ruthenium oxides; nano;
D O I
10.1016/j.sna.2005.08.008
中图分类号
TM [电工技术]; TN [电子技术、通信技术];
学科分类号
0808 ; 0809 ;
摘要
RuO2 based cryogenic temperature sensors were developed using a nanopowder approach. Ruthenium oxide nanopowders were consolidated t, process and were tested for resistivity as a function of temperature for determining into compacts Using the Plasma Pressure Compaction ((PC)-C-2 (R)) the reproducibility and stability of the sensors due to thermal stresses. The sensors showed metallic behavior and strong positive temperature coefficient of resistivity (PTCR). Resistance-temperaturc calibration demonstrated a monotonic response with a positive temperature coefficient of resistivity from 70 to 300 K along with dimensionless sensitivity (approximately 1.0) comparable to that of platinum resistance thermometers. (c) 2005 Published by Elsevier B.V.
引用
收藏
页码:358 / 362
页数:5
相关论文
共 50 条
  • [31] Effects of high intensity cryogenic irradiation and magnetic field on temperature sensors
    Filippov, YP
    Golikov, VV
    Kulagin, EN
    Shabratov, VG
    ADVANCES IN CRYOGENIC ENGINEERING, VOL 43 PTS A AND B, 1998, 43 : 773 - 780
  • [32] Planar Ruthenium Oxide Sensors for Cell-on-a-Chip Metabolic Studies
    Brischwein, M.
    Grothe, H.
    Wiest, J.
    Zottmann, M.
    Ressler, J.
    Wolf, B.
    CHEMIA ANALITYCZNA, 2009, 54 (06): : 1193 - 1201
  • [33] Cryogenic fiber optic temperature sensors based on fiber Bragg gratings
    Yeager, C. J.
    McGee, C.
    Maklad, M.
    Swinehart, P. R.
    ADVANCES IN CRYOGENIC ENGINEERING, VOLS 51A AND B, 2006, 823 : 267 - +
  • [34] Strain Calibration of Substrate-Free FBG Sensors at Cryogenic Temperature
    Venkatesan, Venkataraman Narayanan
    Weiss, Klaus-Peter
    Bharti, Ram Prakash
    Neumann, Holger
    Ramalingam, Rajinikumar
    INTERNET OF THINGS: IOT INFRASTRUCTURES, IOT 360, PT II, 2016, 170 : 191 - 202
  • [35] An optimal piecewise Chebyshev fitting method to calibrate cryogenic temperature sensors
    Tang, Xiaohe
    Gong, Xun
    Li, Xiuyan
    Lin, Zude
    You, Minmin
    Liu, Jingquan
    INTERNATIONAL CONFERENCE ON OPTOELECTRONIC AND MICROELECTRONIC TECHNOLOGY AND APPLICATION, 2020, 11617
  • [36] Cryogenic Temperature characteristics of Thermosetting Epoxy Resins coated FBG Sensors
    Cai, Zijian
    Song, Han
    Zhang, Zhiyong
    Yao, Xingyu
    2021 IEEE SENSORS APPLICATIONS SYMPOSIUM (SAS 2021), 2021,
  • [37] Integrated cryogenic sensors combining temperature with pressure, level, or flow measurement
    Juanarena, D.B.
    Rao, M.G.
    Instrumentation in the Aerospace Industry, Proceedings of the ISA Aerospace Instrumentation Symposium, 1991, 37 : 741 - 753
  • [38] Surface Acoustic Wave (SAW) Sensors for Cryogenic Temperature and Strain Sensing
    Furniss, Jonathan
    Carka, Dorinamaria
    Voiculescu, Ioana
    Lee, Kun-Lin
    Xiang, Dan
    Li, Fang
    2018 6TH IEEE INTERNATIONAL CONFERENCE ON WIRELESS FOR SPACE AND EXTREME ENVIRONMENTS (WISEE), 2018, : 206 - 211
  • [39] High level gamma radiation effects on Cernox™ cryogenic temperature sensors
    Courts, S. S.
    ADVANCES IN CRYOGENIC ENGINEERING, 2017, 278
  • [40] Micrometer Sized Hexagonal Chromium Selenide Flakes for Cryogenic Temperature Sensors
    Buruiana, Angel-Theodor
    Sava, Florinel
    Iacob, Nicusor
    Matei, Elena
    Bocirnea, Amelia Elena
    Onea, Melania
    Galca, Aurelian-Catalin
    Mihai, Claudia
    Velea, Alin
    Kuncser, Victor
    SENSORS, 2021, 21 (23)