Separating sublinear time computations by approximate diameter

被引:0
|
作者
Fu, Bin [1 ]
Zhao, Zhiyu [2 ]
机构
[1] Univ Texas Pan Amer, Dept Comp Sci, Edinburg, TX 78539 USA
[2] Univ New Orleans, Dept Comp Sci, New Orleans, LA 70148 USA
关键词
D O I
暂无
中图分类号
TP301 [理论、方法];
学科分类号
081202 ;
摘要
We study sublinear time complexity and algorithm to approximate the diameter for a sequence S = p(1)p(2)... p(n) of points in a metric space, in which every pair of two consecutive point's p(i) and p(i+i) in the sequence S has the same distance. The diameter of S is the largest distance between two points p(i) and p(j) in S. The approximate diameter problem is investigated under deterministic, zero error randomized, and bounded error randomized models. We obtain a class of separations about the sublinear time computations using various versions of the approximate diameter problem based on the restriction about, the format of input data.
引用
收藏
页码:79 / +
页数:2
相关论文
共 50 条
  • [1] Separating sublinear time computations by approximate diameter
    Fu, Bin
    Zhao, Zhiyu
    JOURNAL OF COMBINATORIAL OPTIMIZATION, 2009, 18 (04) : 393 - 416
  • [2] Separating sublinear time computations by approximate diameter
    Bin Fu
    Zhiyu Zhao
    Journal of Combinatorial Optimization, 2009, 18 : 393 - 416
  • [3] Sublinear time approximate clustering
    Mishra, N
    Oblinger, D
    Pitt, L
    PROCEEDINGS OF THE TWELFTH ANNUAL ACM-SIAM SYMPOSIUM ON DISCRETE ALGORITHMS, 2001, : 439 - 447
  • [4] Computing (1 + ϵ)-Approximate Degeneracy in Sublinear Time
    King, Valerie
    Thomo, Alex
    Yong, Quinton
    IJCAI International Joint Conference on Artificial Intelligence, 2023, 2023-August : 2160 - 2168
  • [5] Sublinear time algorithms for approximate semidefinite programming
    Dan Garber
    Elad Hazan
    Mathematical Programming, 2016, 158 : 329 - 361
  • [6] Sublinear time algorithms for approximate semidefinite programming
    Garber, Dan
    Hazan, Elad
    MATHEMATICAL PROGRAMMING, 2016, 158 (1-2) : 329 - 361
  • [7] Sublinear Time Algorithms and Complexity of Approximate Maximum Matching
    Behnezhad, Soheil
    Roghani, Mohammad
    Rubinstein, Aviad
    PROCEEDINGS OF THE 55TH ANNUAL ACM SYMPOSIUM ON THEORY OF COMPUTING, STOC 2023, 2023, : 267 - 280
  • [8] Computing (1+∈)-Approximate Degeneracy in Sublinear Time
    King, Valerie
    Thomo, Alex
    Yong, Quinton
    PROCEEDINGS OF THE THIRTY-SECOND INTERNATIONAL JOINT CONFERENCE ON ARTIFICIAL INTELLIGENCE, IJCAI 2023, 2023, : 2160 - 2168
  • [9] Sublinear-Time Quantum Computation of the Diameter in CONGEST Networks
    Le Gall, Francois
    Magniez, Frederic
    PODC'18: PROCEEDINGS OF THE 2018 ACM SYMPOSIUM ON PRINCIPLES OF DISTRIBUTED COMPUTING, 2018, : 337 - 346
  • [10] Approximate K-Means plus plus in Sublinear Time
    Bachem, Olivier
    Lucic, Mario
    Hassani, S. Hamed
    Krause, Andreas
    THIRTIETH AAAI CONFERENCE ON ARTIFICIAL INTELLIGENCE, 2016, : 1459 - 1467