Separating sublinear time computations by approximate diameter

被引:0
|
作者
Fu, Bin [1 ]
Zhao, Zhiyu [2 ]
机构
[1] Univ Texas Pan Amer, Dept Comp Sci, Edinburg, TX 78539 USA
[2] Univ New Orleans, Dept Comp Sci, New Orleans, LA 70148 USA
关键词
D O I
暂无
中图分类号
TP301 [理论、方法];
学科分类号
081202 ;
摘要
We study sublinear time complexity and algorithm to approximate the diameter for a sequence S = p(1)p(2)... p(n) of points in a metric space, in which every pair of two consecutive point's p(i) and p(i+i) in the sequence S has the same distance. The diameter of S is the largest distance between two points p(i) and p(j) in S. The approximate diameter problem is investigated under deterministic, zero error randomized, and bounded error randomized models. We obtain a class of separations about the sublinear time computations using various versions of the approximate diameter problem based on the restriction about, the format of input data.
引用
收藏
页码:79 / +
页数:2
相关论文
共 50 条
  • [41] Scheduling real-time bag-of-tasks applications with approximate computations in SaaS clouds
    Stavrinides, Georgios L.
    Karatza, Helen D.
    CONCURRENCY AND COMPUTATION-PRACTICE & EXPERIENCE, 2020, 32 (01):
  • [42] A simulated annealing approach to approximate Bayes computations
    Albert, Carlo
    Kunsch, Hans R.
    Scheidegger, Andreas
    STATISTICS AND COMPUTING, 2015, 25 (06) : 1217 - 1232
  • [43] ABCtoolbox: a versatile toolkit for approximate Bayesian computations
    Daniel Wegmann
    Christoph Leuenberger
    Samuel Neuenschwander
    Laurent Excoffier
    BMC Bioinformatics, 11
  • [44] APPROXIMATE COMPUTATIONS OF DEBYE TEMPERATURES OF PURE METALS
    MCLACHLAN, D
    ACTA METALLURGICA, 1967, 15 (01): : 153 - +
  • [45] ABCtoolbox: a versatile toolkit for approximate Bayesian computations
    Wegmann, Daniel
    Leuenberger, Christoph
    Neuenschwander, Samuel
    Excoffier, Laurent
    BMC BIOINFORMATICS, 2010, 11
  • [46] NEURAL NETWORK TRAINING WITH APPROXIMATE LOGARITHMIC COMPUTATIONS
    Sanyal, Arnab
    Beerel, Peter A.
    Chugg, Keith M.
    2020 IEEE INTERNATIONAL CONFERENCE ON ACOUSTICS, SPEECH, AND SIGNAL PROCESSING, 2020, : 3122 - 3126
  • [47] A simulated annealing approach to approximate Bayes computations
    Carlo Albert
    Hans R. Künsch
    Andreas Scheidegger
    Statistics and Computing, 2015, 25 : 1217 - 1232
  • [48] Checking approximate computations of polynomials and functional equations
    Ergün, F
    Kumar, SR
    Rubinfeld, R
    SIAM JOURNAL ON COMPUTING, 2001, 31 (02) : 550 - 576
  • [49] FAST APPROXIMATE COMPUTATIONS WITH CAUCHY MATRICES AND POLYNOMIALS
    Pan, Victor Y.
    MATHEMATICS OF COMPUTATION, 2017, 86 (308) : 2799 - 2826
  • [50] interActors: A Model for Separating Complex Communication Concerns in Multiagent Computations
    Geng, Hongxing
    Jamali, Nadeem
    AAMAS'17: PROCEEDINGS OF THE 16TH INTERNATIONAL CONFERENCE ON AUTONOMOUS AGENTS AND MULTIAGENT SYSTEMS, 2017, : 1550 - 1552