Products of m-isometries

被引:54
|
作者
Bermudez, Teresa [1 ]
Martinon, Antonio [1 ]
Agustin Noda, Juan [1 ]
机构
[1] Univ La Laguna, Dept Anal Matemat, San Cristobal la Laguna 38271, Tenerife, Spain
关键词
Isometry; m-Isometry; (m; p)-Isometry; Hilbert-Schmidt operators; OPERATORS; TRANSFORMATIONS; THEOREM;
D O I
10.1016/j.laa.2012.07.011
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
An operator Ton a Banach space X is called an (m, p)-isometry if it satisfies the equality Sigma(m)(k=0) ((m)(k))(-1)(m-k)parallel to T(k)x parallel to(p) = 0, for all x epsilon X. In this paper we prove that if T is an (n, p)-isometry, S is an (m, p)-isometry and they commute, then TS is an (m + n - 1, p)-isometry. This result applied to elementary operators of length 1 defined on the Hilbert-Schmidt class proves a conjecture in [11]. (C) 2012 Elsevier Inc. All rights reserved.
引用
收藏
页码:80 / 86
页数:7
相关论文
共 50 条