MAPS PRESERVING m- ISOMETRIES ON HILBERT SPACE

被引:1
|
作者
Majidi, Alireza [1 ]
机构
[1] Islamic Azad Univ, Mashhad Branch, Dept Math, Mashhad, Razavi Khorasan, Iran
来源
KOREAN JOURNAL OF MATHEMATICS | 2019年 / 27卷 / 03期
关键词
C*-algebra; Hilbert space; m-isometry; preserving linear map;
D O I
10.11568/kjm.2019.27.3.735
中图分类号
O1 [数学];
学科分类号
0701 ; 070101 ;
摘要
Let H be a complex Hilbert space and B(H) the algebra of all bounded linear operators on H. In this paper, we prove that if phi : B(H) -> B(H) is a unital surjective bounded linear map, which preserves m- isometrics m = 1, 2 in both directions, then there are unitary operators U, V is an element of B(H) such that phi(T) = UTV or phi(T) = (UTV)-V-tr for all T is an element of B(H), where T-tr is the transpose of T with respect to an arbitrary but fixed orthonormal basis of H.
引用
收藏
页码:735 / 741
页数:7
相关论文
共 50 条