Improving galaxy morphologies for SDSS with Deep Learning

被引:255
|
作者
Sanchez, H. Dominguez [1 ,2 ]
Huertas-Company, M. [1 ,2 ,3 ]
Bernardi, M. [1 ]
Tuccillo, D. [2 ,4 ]
Fischer, J. L. [1 ]
机构
[1] Univ Penn, Dept Phys & Astron, 209 South 33rd St, Philadelphia, PA 19104 USA
[2] UPMC Univ Paris 06, Sorbonne Univ, PSL Res Univ, LERMA,Observ Paris,CNRS, F-75014 Paris, France
[3] Univ Paris Sorbonne Cite PSC, Univ Paris Denis Diderot, F-75205 Paris 13, France
[4] Mines ParisTech, 35 Rue St Honore, F-77305 Fontainebleau, France
关键词
methods; observational catalogues galaxies; structure; NEURAL-NETWORKS; ZOO; CLASSIFICATIONS; DEPENDENCE; EVOLUTION; CATALOG; NEARBY; END;
D O I
10.1093/mnras/sty338
中图分类号
P1 [天文学];
学科分类号
0704 ;
摘要
We present a morphological catalogue for similar to 670 000 galaxies in the Sloan Digital Sky Survey in two flavours: T-type, related to the Hubble sequence, and Galaxy Zoo 2 (GZ2 hereafter) classification scheme. By combining accurate existing visual classification catalogues with machine learning, we provide the largest and most accurate morphological catalogue up to date. The classifications are obtained with Deep Learning algorithms using Convolutional Neural Networks (CNNs). We use two visual classification catalogues, GZ2 and Nair & Abraham (2010), for training CNNs with colour images in order to obtain T-types and a series of GZ2 type questions (disc/features, edge-on galaxies, bar signature, bulge prominence, roundness, and mergers). We also provide an additional probability enabling a separation between pure elliptical (E) from SO, where the T-type model is not so efficient. For the T-type, our results show smaller offset and scatter than previous models trained with support vector machines. For the GZ2 type questions, our models have large accuracy (>97 per cent), precision and recall values (>90 per cent), when applied to a test sample with the same characteristics as the one used for training. The catalogue is publicly released with the paper.
引用
收藏
页码:3661 / 3676
页数:16
相关论文
共 50 条
  • [1] Galaxy Zoo: the fraction of merging galaxies in the SDSS and their morphologies
    Darg, D. W.
    Kaviraj, S.
    Lintott, C. J.
    Schawinski, K.
    Sarzi, M.
    Bamford, S.
    Silk, J.
    Proctor, R.
    Andreescu, D.
    Murray, P.
    Nichol, R. C.
    Raddick, M. J.
    Slosar, A.
    Szalay, A. S.
    Thomas, D.
    Vandenberg, J.
    MONTHLY NOTICES OF THE ROYAL ASTRONOMICAL SOCIETY, 2010, 401 (02) : 1043 - 1056
  • [2] Soft clustering analysis of galaxy morphologies: A worked example with SDSS
    Andrae, R.
    Melchior, P.
    Bartelmann, M.
    Astronomy and Astrophysics, 2010, 522 (01):
  • [3] Soft clustering analysis of galaxy morphologies: a worked example with SDSS
    Andrae, R.
    Melchior, P.
    Bartelmann, M.
    ASTRONOMY & ASTROPHYSICS, 2010, 522
  • [4] YOLO-CL: Galaxy cluster detection in the SDSS with deep machine learning
    Grishin, Kirill
    Mei, Simona
    Ilic, Stephane
    ASTRONOMY & ASTROPHYSICS, 2023, 677
  • [5] Radio Galaxy Zoo: Claran - a deep learning classifier for radio morphologies
    Wu, Chen
    Wong, Oiwei Ivy
    Rudnick, Lawrence
    Shabala, Stanislav S.
    Alger, Matthew J.
    Banfield, Julie K.
    Ong, Cheng Soon
    White, Sarah V.
    Garon, Avery F.
    Norris, Ray P.
    Andernach, Heinz
    Tate, Jean
    Lukic, Vesna
    Tang, Hongming
    Schawinski, Kevin
    Diakogiannis, Foivos I.
    MONTHLY NOTICES OF THE ROYAL ASTRONOMICAL SOCIETY, 2019, 482 (01) : 1211 - 1230
  • [6] YOLO-CL: Galaxy cluster detection in the SDSS with deep machine learning
    Grishin, Kirill
    Mei, Simona
    Ilić, Stéphane
    Astronomy and Astrophysics, 2023, 677
  • [7] Assessment of SDSS-derived Galaxy Morphologies Using HST Imaging
    Osborne, Chandler
    Salim, Samir
    ASTROPHYSICAL JOURNAL, 2024, 965 (02):
  • [8] Galaxy Zoo: reproducing galaxy morphologies via machine learning☆
    Banerji, Manda
    Lahav, Ofer
    Lintott, Chris J.
    Abdalla, Filipe B.
    Schawinski, Kevin
    Bamford, Steven P.
    Andreescu, Dan
    Murray, Phil
    Raddick, M. Jordan
    Slosar, Anze
    Szalay, Alex
    Thomas, Daniel
    Vandenberg, Jan
    MONTHLY NOTICES OF THE ROYAL ASTRONOMICAL SOCIETY, 2010, 406 (01) : 342 - 353
  • [9] Identifying Uncertain Galaxy Morphologies Using Unsupervised Learning
    Edwards, Kieran Jay
    Gaber, Mohamed Medhat
    ARTIFICIAL INTELLIGENCE AND SOFT COMPUTING, PT II, 2013, 7895 : 146 - 157
  • [10] Classifying Galaxy Morphologies with Few-shot Learning
    Zhirui Zhang
    Zhiqiang Zou
    Nan Li
    Yanli Chen
    Research in Astronomy and Astrophysics, 2022, 22 (05) : 11 - 22