Gaussian Kernel-Based Fuzzy Clustering with Automatic Bandwidth Computation

被引:2
|
作者
de Carvalho, Francisco de A. T. [1 ]
Santana, Lucas V. C. [1 ]
Ferreira, Marcelo R. P. [2 ]
机构
[1] Univ Fed Pernambuco, Ctr Informat, Av Jornalista Anibal Fernandes S-N,Cidade Univ, BR-50740560 Recife, PE, Brazil
[2] Univ Fed Paraiba, Ctr Ciencias Exatas & Nat, Dept Estatist, BR-58051900 Joao Pessoa, PB, Brazil
关键词
D O I
10.1007/978-3-030-01418-6_67
中图分类号
TP18 [人工智能理论];
学科分类号
081104 ; 0812 ; 0835 ; 1405 ;
摘要
The conventional Gaussian kernel-based fuzzy c-means clustering algorithm has widely demonstrated its superiority to the conventional fuzzy c-means when the data sets are arbitrarily shaped, and not linearly separable. However, its performance is very dependent on the estimation of the bandwidth parameter of the Gaussian kernel function. Usually this parameter is estimated once and for all. This paper presents a Gaussian fuzzy c-means with kernelization of the metric which depends on a vector of bandwidth parameters, one for each variable, that are computed automatically. Experiments with data sets of the UCI machine learning repository corroborate the usefulness of the proposed algorithm.
引用
收藏
页码:685 / 694
页数:10
相关论文
共 50 条
  • [41] Kernel-Based Fuzzy C-Means Clustering Algorithm for RBF Network Initialization
    Czarnowski, Ireneusz
    Jedrzejowicz, Piotr
    INTELLIGENT DECISION TECHNOLOGIES 2016, PT I, 2016, 56 : 337 - 347
  • [42] Possibilistic approach to kernel-based fuzzy c-means clustering with entropy regularization
    Mizutani, K
    Miyamoto, S
    MODELING DECISIONS FOR ARTIFICIAL INTELLIGENCE, PROCEEDINGS, 2005, 3558 : 144 - 155
  • [43] Bolstering user authentication: a kernel-based fuzzy-clustering model for typing dynamics
    Nwohiri, Anthony Metumaraibe
    Ogude, Ufuoma Cyril
    Hai Vinh Nguyen
    Moreno Sanchez, Edilberto
    INTERNATIONAL JOURNAL OF ELECTRICAL AND COMPUTER ENGINEERING SYSTEMS, 2022, 13 (04) : 301 - 310
  • [44] An Adapted Spatial Information Kernel-based Fuzzy C-means Clustering Method
    Liu, Zhe
    Song, Yuqing
    2014 7TH INTERNATIONAL CONGRESS ON IMAGE AND SIGNAL PROCESSING (CISP 2014), 2014, : 370 - 374
  • [45] Mercer kernel-based clustering in feature space
    Girolami, M
    IEEE TRANSACTIONS ON NEURAL NETWORKS, 2002, 13 (03): : 780 - 784
  • [46] A Kernel-Based Core Growing Clustering Method
    Hsieh, T. W.
    Taur, J. S.
    Tao, C. W.
    Kung, S. Y.
    INTERNATIONAL JOURNAL OF INTELLIGENT SYSTEMS, 2009, 24 (04) : 441 - 458
  • [47] A New Log Kernel-Based Possibilistic Clustering
    Tushir, Meena
    Nigam, Jyotsna
    SOFTWARE ENGINEERING (CSI 2015), 2019, 731 : 139 - 152
  • [48] A new kernel-based algorithm for online clustering
    Boubacar, HA
    Lecoeuche, S
    ARTIFICIAL NEURAL NETWORKS: FORMAL MODELS AND THEIR APPLICATIONS - ICANN 2005, PT 2, PROCEEDINGS, 2005, 3697 : 583 - 588
  • [49] Clustering with kernel-based equiprobabilistic topographic maps
    Van Hulle, MM
    Leuven, KU
    NEURAL NETWORKS FOR SIGNAL PROCESSING VIII, 1998, : 204 - 213
  • [50] Efficient Kernel-Based Fuzzy C-Means Clustering For Pest Detection and Classification
    Vinushree, N.
    Hemalatha, B.
    Kaliappan, Vishnu Kumar
    2014 WORLD CONGRESS ON COMPUTING AND COMMUNICATION TECHNOLOGIES (WCCCT 2014), 2014, : 179 - 181