Gaussian Kernel-Based Fuzzy Clustering with Automatic Bandwidth Computation

被引:2
|
作者
de Carvalho, Francisco de A. T. [1 ]
Santana, Lucas V. C. [1 ]
Ferreira, Marcelo R. P. [2 ]
机构
[1] Univ Fed Pernambuco, Ctr Informat, Av Jornalista Anibal Fernandes S-N,Cidade Univ, BR-50740560 Recife, PE, Brazil
[2] Univ Fed Paraiba, Ctr Ciencias Exatas & Nat, Dept Estatist, BR-58051900 Joao Pessoa, PB, Brazil
关键词
D O I
10.1007/978-3-030-01418-6_67
中图分类号
TP18 [人工智能理论];
学科分类号
081104 ; 0812 ; 0835 ; 1405 ;
摘要
The conventional Gaussian kernel-based fuzzy c-means clustering algorithm has widely demonstrated its superiority to the conventional fuzzy c-means when the data sets are arbitrarily shaped, and not linearly separable. However, its performance is very dependent on the estimation of the bandwidth parameter of the Gaussian kernel function. Usually this parameter is estimated once and for all. This paper presents a Gaussian fuzzy c-means with kernelization of the metric which depends on a vector of bandwidth parameters, one for each variable, that are computed automatically. Experiments with data sets of the UCI machine learning repository corroborate the usefulness of the proposed algorithm.
引用
收藏
页码:685 / 694
页数:10
相关论文
共 50 条
  • [31] Kernel-based fuzzy c-means clustering algorithm based on genetic algorithm
    Ding, Yi
    Fu, Xian
    NEUROCOMPUTING, 2016, 188 : 233 - 238
  • [32] Enhanced kernel-based fuzzy local information clustering integrating neighborhood membership
    Song Yue
    Wu Chengmao
    Tian Xiaoping
    Song Qiuyu
    TheJournalofChinaUniversitiesofPostsandTelecommunications, 2021, 28 (06) : 65 - 81
  • [33] Semi-supervised kernel-based fuzzy clustering for gear outlier detection
    School of Mechanical and Automotive Engineering, South China University of Technology, Guangzhou 510640, China
    Jixie Gongcheng Xuebao, 2009, 10 (48-52):
  • [34] A novel fuzzy rule extraction approach using Gaussian kernel-based granular computing
    Dai, Guangyao
    Hu, Yi
    Yang, Yu
    Zhang, Nanxun
    Abraham, Ajith
    Liu, Hongbo
    KNOWLEDGE AND INFORMATION SYSTEMS, 2019, 61 (02) : 821 - 846
  • [35] A Gaussian kernel-based fuzzy c-means algorithm with a spatial bias correction
    Yang, Miin-Shen
    Tsai, Hsu-Shen
    PATTERN RECOGNITION LETTERS, 2008, 29 (12) : 1713 - 1725
  • [36] A novel fuzzy rule extraction approach using Gaussian kernel-based granular computing
    Guangyao Dai
    Yi Hu
    Yu Yang
    Nanxun Zhang
    Ajith Abraham
    Hongbo Liu
    Knowledge and Information Systems, 2019, 61 : 821 - 846
  • [37] OPTIMAL KERNEL BANDWIDTH ESTIMATION FOR HYPERSPECTRAL KERNEL-BASED ANOMALY DETECTION
    Kwon, Heesung
    Gurram, Prudhvi
    2010 IEEE INTERNATIONAL GEOSCIENCE AND REMOTE SENSING SYMPOSIUM, 2010, : 2812 - 2815
  • [38] 2D hierarchical fuzzy clustering using kernel-based membership functions
    Proietti, A.
    Liparulo, L.
    Panella, M.
    ELECTRONICS LETTERS, 2016, 52 (03) : 193 - 194
  • [39] Kernel-based Fuzzy C-means Clustering Based on Fruit Fly Optimization Algorithm
    Wang, Qiuping
    Zhang, Yiran
    Xiao, Yanting
    Li, Jidong
    PROCEEDINGS OF 2017 IEEE INTERNATIONAL CONFERENCE ON GREY SYSTEMS AND INTELLIGENT SERVICES (GSIS), 2017, : 251 - 256
  • [40] Clustering incomplete data using kernel-based fuzzy C-means algorithm
    Zhang, DQ
    Chen, SC
    NEURAL PROCESSING LETTERS, 2003, 18 (03) : 155 - 162