The validity of the multifractal formalism: Results and examples

被引:55
|
作者
Ben Nasr, F [1 ]
Bhouri, I
Heurteaux, Y
机构
[1] Fac Sci Monastir, Monastir 5000, Tunisia
[2] Inst Preparatoire Etud Ingn Monastir, Monastir 5000, Tunisia
[3] Univ Clermont Ferrand, Lab Math Pures, F-63177 Aubiere, France
关键词
multifractal formalism; multifractal spectrum; Hausdorff dimension; packing dimension;
D O I
10.1006/aima.2001.2025
中图分类号
O1 [数学];
学科分类号
0701 ; 070101 ;
摘要
By obtaining a new sufficient condition for a valid multifractal formalism, we improve in this paper a result developed by. L. Olsen (1995. Adv. Math. 116, 82 196). In particular. we describe a large class of measures satisfying the multifractal formalism and for which the construction of Gibbs measures is not possible, Some of these measures are not unidimensional but hake a nontrivial multifractal spectrum. giving a negative answer to a question asked by S. J. Taylor (1995. J. Fourier Anal. Appl., special issue). We also describe a necessary condition of validity for the formalism which is very close to the sufficient one. This necessary condition allows us to describe a measure mu for which the multifractal packing dimension function B-n(q) is a nontrivial real analytic function but the multifractal formalism is nowhere satisfied. This example gives also a solution to a problem posed by Taylor (cited above). (C) 2002 Elsevier Science (USA).
引用
收藏
页码:264 / 284
页数:21
相关论文
共 50 条
  • [31] Multifractal formalism for self-similar bridges
    Huillet, T.
    Jeannet, B.
    Journal of Physics A: Mathematical and General, 31 (11):
  • [32] ON THE MULTIFRACTAL FORMALISM FOR BERNOULLI PRODUCTS OF INVERTIBLE MATRICES
    Bhouri, Imen
    Tlili, Houssem
    DISCRETE AND CONTINUOUS DYNAMICAL SYSTEMS, 2009, 24 (04) : 1129 - 1145
  • [33] Correction: A Multifractal Formalism for Hewitt–Stromberg Measures
    Najmeddine Attia
    Bilel Selmi
    The Journal of Geometric Analysis, 2022, 32
  • [34] Multifractal spectrum and thermodynamical formalism of the Farey tree
    Piacquadio, M
    Cesaratto, E
    INTERNATIONAL JOURNAL OF BIFURCATION AND CHAOS, 2001, 11 (05): : 1331 - 1358
  • [35] A Multifractal Formalism for Hewitt-Stromberg Measures
    Attia, Najmeddine
    Selmi, Bilel
    JOURNAL OF GEOMETRIC ANALYSIS, 2021, 31 (01) : 825 - 862
  • [36] Application of the microcanonical multifractal formalism to monofractal systems
    Pont, Oriol
    Turiel, Antonio
    Perez-Vicente, Conrad J.
    PHYSICAL REVIEW E, 2006, 74 (06):
  • [37] Multifractal formalism for self-similar bridges
    Huillet, T
    Jannet, B
    JOURNAL OF PHYSICS A-MATHEMATICAL AND GENERAL, 1998, 31 (11): : 2567 - 2590
  • [38] A multifractal formalism for new general fractal measures
    Achour, Rim
    Li, Zhiming
    Selmi, Bilel
    Wang, Tingting
    CHAOS SOLITONS & FRACTALS, 2024, 181
  • [39] The Multifractal Formalism for Measures, Review and Extension to Mixed Cases
    Mohamed Menceur
    Anouar Ben Mabrouk
    Kamel Betina
    Analysis in Theory and Applications, 2016, 32 (04) : 303 - 332
  • [40] On multifractal formalism for self-similar measures with overlaps
    Julien Barral
    De-Jun Feng
    Mathematische Zeitschrift, 2021, 298 : 359 - 383