Analysis of an algebraic Petrov-Galerkin smoothed aggregation multigrid method

被引:9
|
作者
Guillard, Herve [1 ]
Janka, Ales [2 ]
Vanek, Petr [3 ]
机构
[1] INRIA, F-06902 Sophia Antipolis, France
[2] Ecole Polytech Fed Lausanne, CH-1015 Lausanne, Switzerland
[3] Univ Calif Los Angeles, Dept Math, Los Angeles, CA 90024 USA
关键词
Multigrid; Finite elements; Finite volumes; Algebraic multigrid; Smoothed aggregation; Agglomeration multigrid;
D O I
10.1016/j.apnum.2007.11.008
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
We give a convergence estimate for a Petrov-Galerkin Algebraic Multigrid method. In this method, the prolongations are defined using the concept of smoothed aggregation while the restrictions are simple aggregation operators. The analysis is carried out by showing that these methods can be interpreted as variational Ritz-Galerkin ones using modified transfer and smoothing operators. The estimate depends only on a weak approximation property for the aggregation operators. For a scalar second order elliptic problem using linear elements, this assumption is shown to hold using simple geometrical arguments on the aggregates. (C) 2007 IMACS. Published by Elsevier B.V. All rights reserved.
引用
收藏
页码:1861 / 1874
页数:14
相关论文
共 50 条
  • [41] The natural neighbour Petrov-Galerkin method for thick plates
    Li, S. L.
    Liu, K. Y.
    Long, S. Y.
    Li, G. Y.
    ENGINEERING ANALYSIS WITH BOUNDARY ELEMENTS, 2011, 35 (04) : 616 - 622
  • [42] Meshless local Petrov-Galerkin method in anisotropic elasticity
    Sladek, J
    Sladek, V
    Atluri, SN
    CMES-COMPUTER MODELING IN ENGINEERING & SCIENCES, 2004, 6 (05): : 477 - 489
  • [43] Meshless local Petrov-Galerkin method for the laminated plates
    Xiong, Y. (yuanbox@msn.com), 2005, Beijing University of Aeronautics and Astronautics (BUAA) (22):
  • [44] Moving element free Petrov-Galerkin viscous method
    Ghorbany, M
    Soheili, AR
    JOURNAL OF THE CHINESE INSTITUTE OF ENGINEERS, 2004, 27 (04) : 473 - 479
  • [45] CUDA Approach for Meshless Local Petrov-Galerkin Method
    Correa, Bruno C.
    Mesquita, Renato C.
    Amorim, Lucas P.
    IEEE TRANSACTIONS ON MAGNETICS, 2015, 51 (03)
  • [46] AN INTERPOLATING LOCAL PETROV-GALERKIN METHOD FOR POTENTIAL PROBLEMS
    Chen, L.
    Liu, C.
    Ma, H. P.
    Cheng, Y. M.
    INTERNATIONAL JOURNAL OF APPLIED MECHANICS, 2014, 6 (01)
  • [47] A unified Petrov-Galerkin spectral method for fractional PDEs
    Zayernouri, Mohsen
    Ainsworth, Mark
    Karniadakis, George Em
    COMPUTER METHODS IN APPLIED MECHANICS AND ENGINEERING, 2015, 283 : 1545 - 1569
  • [48] OPTIMALLY ACCURATE PETROV-GALERKIN METHOD OF FINITE ELEMENTS
    M.Stojanovió
    Analysis in Theory and Applications, 1996, (02) : 86 - 98
  • [49] Wavelet applications to the Petrov-Galerkin method for Hammerstein equations
    Kaneko, H
    Noren, RD
    Novaprateep, B
    APPLIED NUMERICAL MATHEMATICS, 2003, 45 (2-3) : 255 - 273
  • [50] Meshless local Petrov-Galerkin method for plane piezoelectricity
    Sladek, J.
    Sladek, V.
    Zhang, Ch.
    Garcia-Sanche, F.
    Wuensche, M.
    CMC-COMPUTERS MATERIALS & CONTINUA, 2006, 4 (02): : 109 - 117