Analysis of an algebraic Petrov-Galerkin smoothed aggregation multigrid method

被引:9
|
作者
Guillard, Herve [1 ]
Janka, Ales [2 ]
Vanek, Petr [3 ]
机构
[1] INRIA, F-06902 Sophia Antipolis, France
[2] Ecole Polytech Fed Lausanne, CH-1015 Lausanne, Switzerland
[3] Univ Calif Los Angeles, Dept Math, Los Angeles, CA 90024 USA
关键词
Multigrid; Finite elements; Finite volumes; Algebraic multigrid; Smoothed aggregation; Agglomeration multigrid;
D O I
10.1016/j.apnum.2007.11.008
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
We give a convergence estimate for a Petrov-Galerkin Algebraic Multigrid method. In this method, the prolongations are defined using the concept of smoothed aggregation while the restrictions are simple aggregation operators. The analysis is carried out by showing that these methods can be interpreted as variational Ritz-Galerkin ones using modified transfer and smoothing operators. The estimate depends only on a weak approximation property for the aggregation operators. For a scalar second order elliptic problem using linear elements, this assumption is shown to hold using simple geometrical arguments on the aggregates. (C) 2007 IMACS. Published by Elsevier B.V. All rights reserved.
引用
收藏
页码:1861 / 1874
页数:14
相关论文
共 50 条
  • [31] A UNIFIED DISCONTINUOUS PETROV-GALERKIN METHOD AND ITS ANALYSIS FOR FRIEDRICHS' SYSTEMS
    Tan Bui-Thanh
    Demkowicz, Leszek
    Ghattas, Omar
    SIAM JOURNAL ON NUMERICAL ANALYSIS, 2013, 51 (04) : 1933 - 1958
  • [32] NON-GALERKIN MULTIGRID BASED ON SPARSIFIED SMOOTHED AGGREGATION
    Treister, Eran
    Yavneh, Irad
    SIAM JOURNAL ON SCIENTIFIC COMPUTING, 2015, 37 (01): : A30 - A54
  • [33] A meshless local Petrov-Galerkin scaled boundary method
    Deeks, AJ
    Augarde, CE
    COMPUTATIONAL MECHANICS, 2005, 36 (03) : 159 - 170
  • [34] A SCALABLE PRECONDITIONER FOR A PRIMAL DISCONTINUOUS PETROV-GALERKIN METHOD
    Barker, A. T.
    Dobrev, V.
    Gopalakrishnan, J.
    Kolev, T.
    SIAM JOURNAL ON SCIENTIFIC COMPUTING, 2018, 40 (02): : A1187 - A1203
  • [35] DOMAIN DECOMPOSITION PRECONDITIONERS FOR THE DISCONTINUOUS PETROV-GALERKIN METHOD
    Li, Xiang
    Xu, Xuejun
    ESAIM-MATHEMATICAL MODELLING AND NUMERICAL ANALYSIS-MODELISATION MATHEMATIQUE ET ANALYSE NUMERIQUE, 2017, 51 (03): : 1021 - 1044
  • [36] Meshless local Petrov-Galerkin method for plane piezoelectricity
    Sladek, J.
    Sladek, V.
    Zhang, Ch.
    Garcia-Sanche, F.
    Wünsche, M.
    Computers, Materials and Continua, 2006, 4 (02): : 109 - 117
  • [37] A quasi optimal Petrov-Galerkin method for Helmholtz problem
    Loula, Abimael F. D.
    Fernandes, Daniel T.
    INTERNATIONAL JOURNAL FOR NUMERICAL METHODS IN ENGINEERING, 2009, 80 (12) : 1595 - 1622
  • [38] A MOVING PETROV-GALERKIN METHOD FOR TRANSPORT-EQUATIONS
    HERBST, BM
    SCHOOMBIE, SW
    MITCHELL, AR
    INTERNATIONAL JOURNAL FOR NUMERICAL METHODS IN ENGINEERING, 1982, 18 (09) : 1321 - 1336
  • [39] Error assessment in the meshless local Petrov-Galerkin method
    Pannachet, T
    Barry, W
    Askes, H
    COMPUTATIONAL MECHANICS, VOLS 1 AND 2, PROCEEDINGS: NEW FRONTIERS FOR THE NEW MILLENNIUM, 2001, : 989 - 994
  • [40] On the improvements and applications of the Meshless Local Petrov-Galerkin method
    Department of Geotechnical Engineering, Tongji University, Shanghai 200092, China
    不详
    不详
    Tongji Daxue Xuebao, 2006, 5 (603-606):