Identification and decompositions in probit and logit models

被引:2
|
作者
Choe, Chung [1 ]
Jung, SeEun [2 ]
Oaxaca, Ronald L. [3 ,4 ,5 ,6 ,7 ]
机构
[1] Hanyang Univ, ERICA Campus,55 Hanyangdaehak Ro, Ansan 426791, Gyeonggi Do, South Korea
[2] Inha Univ, Dept Econ, 100 Inharo, Incheon 22212, South Korea
[3] Univ Arizona, Eller Coll Management, Dept Econ, McClelland Hall 401,POB 210108, Tucson, AZ 85721 USA
[4] GLO, Geneva, Switzerland
[5] LISER, Esch Sur Alzette, Luxembourg
[6] IZA, Bonn, Germany
[7] PRESAGE, Paris, France
关键词
Decompositions; Probit; Logit; Identification; RISK;
D O I
10.1007/s00181-019-01716-2
中图分类号
F [经济];
学科分类号
02 ;
摘要
Probit and logit models typically require a normalization on the error variance for model identification. This paper shows that in the context of decompositions of group sample mean proportions, error variance normalizations preclude estimation of the effects of group differences in the latent variable model parameters. This problem applies equally to decompositions of group differences in the underlying latent outcome variable. An empirical example is provided for a probit model in which the error variances are identified if an underlying random utility/latent variable theoretical model contains a variable whose coefficient is equal to 1. In the resulting probit model, for example, the coefficient of this variable is the reciprocal of the error term standard deviation. From this information, one can back out estimates of all of the coefficients in the underlying random utility/latent variable model and thereby allow the effects of group differences in the latent variable model parameters to be estimated.
引用
收藏
页码:1479 / 1492
页数:14
相关论文
共 50 条
  • [21] Modellvergleich und Ergebnisinterpretation in Logit- und Probit-RegressionenComparing nested models and interpreting results from logit and probit regression
    Henning Best
    Christof Wolf
    [J]. KZfSS Kölner Zeitschrift für Soziologie und Sozialpsychologie, 2012, 64 : 377 - 395
  • [22] Multinomial probit and multinomial logit: a comparison of choice models for voting research
    Dow, JK
    Endersby, JW
    [J]. ELECTORAL STUDIES, 2004, 23 (01) : 107 - 122
  • [23] Testing for Interaction in Binary Logit and Probit Models: Is a Product Term Essential?
    Berry, William D.
    DeMeritt, Jacqueline H. R.
    Esarey, Justin
    [J]. AMERICAN JOURNAL OF POLITICAL SCIENCE, 2010, 54 (01) : 248 - 266
  • [24] Comparing nested models and interpreting results from logit and probit regression
    Best, Henning
    Wolf, Christof
    [J]. KOLNER ZEITSCHRIFT FUR SOZIOLOGIE UND SOZIALPSYCHOLOGIE, 2012, 64 (02): : 377 - 395
  • [25] The use of logit and probit models in strategic management research: Critical issues
    Hoetker, Glenn
    [J]. STRATEGIC MANAGEMENT JOURNAL, 2007, 28 (04) : 331 - 343
  • [26] Another Look at the Method of Y-Standardization in Logit and Probit Models
    Karlson, Kristian Bernt
    [J]. JOURNAL OF MATHEMATICAL SOCIOLOGY, 2015, 39 (01): : 29 - 38
  • [27] Boolean logit and probit in Stata
    Braumoeller, Bear F.
    [J]. STATA JOURNAL, 2004, 4 (04): : 436 - 441
  • [28] A model averaging approach for the ordered probit and nested logit models with applications
    Chen, Longmei
    Wan, Alan T. K.
    Tso, Geoffrey
    Zhang, Xinyu
    [J]. JOURNAL OF APPLIED STATISTICS, 2018, 45 (16) : 3012 - 3052
  • [29] On probit versus logit dynamic mixed models for binary panel data
    Sutradhar, Brajendra C.
    Bari, Wasimul
    Das, Kalyan
    [J]. JOURNAL OF STATISTICAL COMPUTATION AND SIMULATION, 2010, 80 (04) : 421 - 441
  • [30] ESTIMATED RESERVES EXPECTED IN A FINANCIAL INSTITUTION USING LOGIT AND PROBIT MODELS
    Tamara Ayus, Armando Lenin
    Aristizabal Velasquez, Raul Enrique
    Velasquez Ceballos, Hermilson
    [J]. REVISTA CIENCIAS ESTRATEGICAS, 2010, 18 (24): : 259 - 270